Math 335-002 Homework #11

Due date: March 10, 2008

Calculate the surface integral $\iint_{S} \vec{\mathbf{u}} \cdot \vec{\mathbf{n}} \, dS$ of a vector field $\vec{\mathbf{u}}$ over the given surface S:

- 1. Problems 2.7, p. 43.
- 2. $\vec{\mathbf{u}} = (e^x, y^2, x+y+z)$, and *S* is the part of the coordinate plane z=0 lying between the curves y=x and $y=x^3$ in the positive quadrant ($x \ge 0, y \ge 0$). Assume $\vec{\mathbf{n}}$ points in the positive *z* direction.
- 3. $\vec{\mathbf{u}} = (x, 0, z)$, and S is the part of the surface $z = x + y^2$ with $z \le 0$ and $x \ge -1$ (this problem is similar to problem 2.8 on page 43).

variables x and y as surface parameters: $\iint_{S} \mathbf{u} \cdot \mathbf{n} \, dS = \iint_{S} \mathbf{u} \cdot \left(\frac{\partial \mathbf{r}_{s}}{\partial x} \times \frac{\partial \mathbf{r}_{s}}{\partial y}\right) dx \, dy$

- 5. $\vec{\mathbf{u}} = (y, x, \ln(x+y))$, and *S* is the curved side of the cylinder $x^2 + y^2 = 1$ lying between the planes z=0 and z=1 in the 1st octant $x \ge 0$, $y \ge 0$, $z \ge 0$, with the normal pointing outward. Use variables *y* (or *x*) and *z* to parametrize this curved surface (Hint: the position vector will contain a square root, but everything simplifies in the end).
- 6. $\vec{\mathbf{u}} = (z, y, z)$, and S is the closed surface of a unit cube given by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$, with the unit vector pointing outward. This integral is calculated as a sum of six surface integrals corresponding to the six faces of the cube (this problem is similar to problem 2.6 on p. 43)