Math 335-002
 Homework \#11

Due date: March 10, 2008

Calculate the surface integral $\iint_{S} \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{n}} d S$ of a vector field $\overrightarrow{\mathbf{u}}$ over the given surface S :

1. Problems 2.7, p. 43.
2. $\quad \overrightarrow{\mathbf{u}}=\left(\mathrm{e}^{x}, y^{2}, x+y+z\right)$, and S is the part of the coordinate plane $z=0$ lying between the curves $y=x$ and $y=x^{3}$ in the positive quadrant $(x \geq 0, y \geq 0)$. Assume $\overrightarrow{\mathbf{n}}$ points in the positive z direction.
3. $\overrightarrow{\mathbf{u}}=(x, 0, z)$, and S is the part of the surface $z=x+y^{2}$ with $z \leq 0$ and $x \geq-1$ (this problem is similar to problem 2.8 on page 43).
4. $\overrightarrow{\mathbf{u}}=(1,-y,-z)$, and S is the part of the flat surface $\mathrm{z}=1-x-2 y$ lying in the octant $x \geq 0$, $y \geq 0, z \geq 0$; assume $\overrightarrow{\mathbf{n}}$ has a positive z component. Sketch this plane by indicating its intersections with the three coordinate surfaces ($x=0, y=0$ and $z=0$). Although this surface is not curved, it is still convenient to use the equation on page 35 , with variables x and y as surface parameters: $\iint_{S} \mathbf{u} \cdot \mathbf{n} d S=\iint_{S} \mathbf{u} \cdot\left(\frac{\partial \mathbf{r}_{s}}{\partial x} \times \frac{\partial \mathbf{r}_{s}}{\partial y}\right) d x d y$
5. $\overrightarrow{\mathbf{u}}=(y, x, \ln (x+y))$, and S is the curved side of the cylinder $x^{2}+y^{2}=1$ lying between the planes $z=0$ and $z=1$ in the $1^{\text {st }}$ octant $x \geq 0, y \geq 0, z \geq 0$, with the normal pointing outward. Use variables y ($\operatorname{or} x$) and z to parametrize this curved surface (Hint: the position vector will contain a square root, but everything simplifies in the end).
6. $\overrightarrow{\mathbf{u}}=(z, y, z)$, and S is the closed surface of a unit cube given by $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$, with the unit vector pointing outward. This integral is calculated as a sum of six surface integrals corresponding to the six faces of the cube (this problem is similar to problem 2.6 on p. 43)
