## Math 335-002 <br> Homework \#13 <br> Due date: March 24, 2008

1. Problems 5.1-5.5, p. 90.
2. Verify the divergence theorem $\left(\iiint_{V} \vec{\nabla} \cdot \overrightarrow{\mathbf{u}} d V=\oiint_{S} \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{n}} d S\right)$ by calculating both the volume integral and the surface integral, for the vector field given by $\overrightarrow{\mathbf{u}}=(0,0$, $1-z$ ), where volume V is the tetrahedron $\mathrm{z}+x+y \leq 1, x \geq 0, y \geq 0, z \geq 0$. When calculating the integral over the closed surface, remember that the normal should point outside the volume. (Hint: the surface is composed of four separate pieces; two of those surfaces give a zero contribution to the integral).
