## Math 335-002

## Homework \#17

## Due April 14

1. Convert the Cartesian vector field $\overrightarrow{\mathbf{v}}=\left(y, 0, z^{2}\right)_{x y z}$ into the cylindrical coordinate system, $\overrightarrow{\mathbf{v}}=\left(\mathrm{v}_{\mathrm{R}}, \mathrm{v}_{\varphi}, \mathrm{v}_{\mathrm{z}}\right)_{\mathrm{R} \varphi \mathrm{z}}$, and the spherical system, $\mathbf{v}=\left(\mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\theta}, \mathrm{v}_{\varphi}\right)_{\mathrm{r} \theta \varphi}$ (we did a similar problem in class; see note on the last page if in doubt)
2. Derive the expressions for the divergence in cylindrical coordinates, starting with the general expression

$$
\vec{\nabla} \cdot \overrightarrow{\mathbf{v}}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial\left(h_{2} h_{3} v_{1}\right)}{\partial u_{1}}+\frac{\partial\left(h_{1} h_{3} v_{2}\right)}{\partial u_{2}}+\frac{\partial\left(h_{1} h_{2} v_{3}\right)}{\partial u_{3}}\right]
$$

where $u_{1}=\mathrm{R}, u_{2}=\varphi, u_{3}=z$. Make sure to simplify whenever possible. Check your result against Eq. 6.15 on p. 109
3. Repeat for the spherical coordinate system. Check your result against Eq. (6.23) on p. 111.
4. Convert the Cartesian components of the vector field $\mathbf{v}=\left(x^{2}, 0,0\right)_{x y z}$ into spherical components, $\mathbf{v}=\left(\mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\theta}, \mathrm{v}_{\varphi}\right)_{\mathrm{r}}{ }_{\varphi}$. Then, find the divergence of this vector field using spherical coordinates (Eq. 6.23 on p. 111), and show that the result agrees with the simple Cartesian calculation, $\vec{\nabla} \cdot \overrightarrow{\mathbf{v}}=2 x$
5. In Cartesian coordinates, the basis vectors ( $\mathbf{e}_{x}, \mathbf{e}_{y}$ and $\mathbf{e}_{z}$ ) have constant direction everywhere, and therefore they have zero divergence (and curl). This is not always the case for the curvilinear coordinate basis vectors. Calculate the divergence of unit vectors $\mathbf{e}_{r}, \mathbf{e}_{\theta}$ and $\mathbf{e}_{\varphi}$ in spherical coordinates, using the expression obtained in problem 3 (Eq. 6.23 on p. 111). Explain why two of the vectors have a non-zero divergence, using a simple sketch.

Note on converting vectors between different coordinate systems
A vector should not depend on a coordinate system we choose to use, so

$$
\mathbf{v}=\mathrm{v}_{x} \mathbf{e}_{\mathrm{x}}+\mathrm{v}_{y} \mathbf{e}_{y}+\mathrm{v}_{z} \mathbf{e}_{z}=\mathrm{v}_{1} \mathbf{e}_{1}+\mathrm{v}_{2} \mathbf{e}_{2}+\mathrm{v}_{3} \mathbf{e}_{3}
$$

where $\mathbf{e}_{1,2,3}$ are the unit vectors of any curvilinear orthogonal coordinate system. We may re-write the above equation in component form as

$$
\mathbf{v}=\left(\mathrm{v}_{x}, \mathrm{v}_{y}, \mathrm{v}_{z}\right)_{x y z}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)_{\mathrm{u} 1 \mathrm{u} 2 \mathrm{u} 3}
$$

where the subscripts indicate the coordinate system of the components. The vector components in brackets are found by projecting the vector onto each of the unit vectors:

$$
\mathbf{v}_{x, y, z}=\mathbf{v} \cdot \mathbf{e}_{x, y, z} \text { and } \mathbf{v}_{1,2,3}=\mathbf{v} \cdot \mathbf{e}_{1,2,3}
$$

where the relationship between the curvilinear basis vectors $\mathbf{e}_{1,2,3}$ and the cartesian basis vectors $\mathbf{e}_{x, y, z}$ is given by

$$
\mathbf{e}_{i}=\frac{\partial \mathbf{r}}{\partial u_{i}} /\left|\frac{\partial \mathbf{r}}{\partial u_{i}}\right|=\frac{1}{h_{i}} \frac{\partial \mathbf{r}}{\partial u_{i}}=\frac{1}{h_{i}} \frac{\partial}{\partial u_{i}}(x, y, z)_{x y z}, \quad i=1,2,3
$$

For cylindrical coordinates, we have (see page 108)

$$
\begin{array}{ll}
\mathbf{e}_{\mathrm{R}}=(1,0,0)_{\mathrm{R} \varphi \mathrm{z}}=(\cos \varphi, \sin \varphi, 0)_{x y z} & \mathrm{v}_{\mathrm{R}}=\mathbf{v} \cdot \mathbf{e}_{\mathrm{R}} \\
\mathbf{e}_{\varphi}=(0,1,0)_{\mathrm{R} \varphi \mathrm{z}}=(-\sin \varphi, \cos \varphi, 0)_{x y z} & \mathrm{v}_{\varphi}=\mathbf{v} \cdot \mathbf{e}_{\varphi} \\
\mathbf{e}_{\mathrm{z}}=(0,0,1)_{\mathrm{R} \varphi \mathrm{z}}=(0,0,1)_{x y z} & \mathrm{v}_{\mathrm{z}}=\mathbf{v} \cdot \mathbf{e}_{\mathrm{z}}
\end{array}
$$

For spherical coordinates, we have (see page 111)

$$
\begin{array}{ll}
\mathbf{e}_{\mathrm{r}}=(1,0,0)_{\mathrm{r} \theta \varphi}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)_{x y z} & \mathrm{v}_{\mathrm{r}}=\mathbf{v} \cdot \mathbf{e}_{\mathrm{r}} \\
\mathbf{e}_{\theta}=(0,1,0)_{\mathrm{r} \theta \varphi}=(\cos \theta \cos \varphi, \cos \theta \sin \varphi,-\sin \theta)_{x y z} & \mathrm{v}_{\theta}=\mathbf{v} \cdot \mathbf{e}_{\theta} \\
\mathbf{e}_{\varphi}=(0,0,1)_{\mathrm{r} \theta \varphi}=(-\sin \varphi, \cos \varphi, 0)_{x y z} & \mathrm{v}_{\varphi}=\mathbf{v} \cdot \mathbf{e}_{\varphi}
\end{array}
$$

