Math 335-002 Homework #19 Due April 21, 2007

- 1. Consider a sphere of radius *a* with charge density increasing with distance from the center as $\rho(r)=\alpha r$, where α is some constant. Find the electric potential Φ both inside and outside of the sphere, by integrating the Poisson's equation in spherical coordinates ($\Delta \Phi = -\rho/\epsilon_0$ inside the sphere, and $\Delta \Phi = 0$ outside of the sphere), as we did in class. Assume that the solution depends on *r* only: $\Phi=\Phi(r)$. Note that the electric field should be continuous across the surface of the sphere; this condition will fix the integration constants
- 2. Check by differentiation that the potential inside and outside the sphere that you found in problem 1 satisfies the Poisson's equation re-written in Cartesian coordinates:

$$\Delta \Phi^{in} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \Phi^{in} = -\frac{\alpha r}{\varepsilon_0} = -\frac{\alpha \sqrt{x^2 + y^2 + z^2}}{\varepsilon_0} - \text{Inside the sphere}$$
$$\Delta \Phi^{out} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \Phi^{out} = 0 - \text{Outside the sphere}$$

Consider a very long cable (cylinder) of radius *a* with a constant charge density inside the cable, *ρ*, and zero charge density outside the cable. Use **cylindrical** coordinates to find the electric potential Φ and the radial component of electric field E_R both inside and outside of the cable, by solving (integrating) ∇²Φ = -ρ/ε₀ inside the cable, and ∇²Φ = 0 outside of the cable, as we did in class for a sphere in spherical coordinates. Assume that Φ depends only on R, the distance from the z-axis, which is the axis of the cable: Φ=Φ(R). Use Eq. 6.16 for the Laplacian. Assume that E_R is continuous across the surface of the cable; this condition will fix one of the integration constant.

4. Use the divergence theorem instead of the Poisson's equation to find the electric field inside a uniformly charged

sphere in example 8.3 on p. 136: $E_r(r) = \rho r / 3 \varepsilon_0$. Hint: integrate both sides of equation $\nabla \cdot E = \rho / \varepsilon_0$ over the volume of a sphere of radius b < a to obtain $E_r(b) = \rho b / 3 \varepsilon_0$