Math 335-002

Homework \#19

Due April 21, 2007

1. Consider a sphere of radius a with charge density increasing with distance from the center as $\rho(r)=\alpha r$, where α is some constant. Find the electric potential Φ both inside and outside of the sphere, by integrating the Poisson's equation in spherical coordinates ($\Delta \Phi=-\rho / \varepsilon_{0}$ inside the sphere, and $\Delta \Phi=0$ outside of the sphere), as we did in class. Assume that the solution depends on r only: $\Phi=\Phi(r)$. Note that the electric field should be continuous across the surface of the sphere; this condition will fix the integration constants
2. Check by differentiation that the potential inside and outside the sphere that you found in problem 1 satisfies the Poisson's equation re-written in Cartesian coordinates:
$\Delta \Phi^{i n}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \Phi^{i n}=-\frac{\alpha r}{\varepsilon_{0}}=-\frac{\alpha \sqrt{x^{2}+y^{2}+z^{2}}}{\varepsilon_{0}}$ - Inside the sphere
$\Delta \Phi^{\text {out }}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \Phi^{\text {out }}=0$ - Outside the sphere

3. Consider a very long cable (cylinder) of radius a with a constant charge density inside the cable, ρ, and zero charge density outside the cable. Use cylindrical coordinates to find the electric potential Φ and the radial component of electric field E_{R} both inside and outside of the cable, by solving (integrating) $\nabla^{2} \Phi=-\rho / \varepsilon_{0}$ inside the cable, and $\nabla^{2} \Phi=0$ outside of the cable, as we did in class for a sphere in spherical coordinates. Assume that Φ depends only on R, the distance from the z-axis, which is the axis of the cable: $\Phi=\Phi(\mathrm{R})$. Use Eq. 6.16 for the Laplacian. Assume that E_{R} is continuous across the surface of the cable; this condition will fix one of the integration constant.
4. Use the divergence theorem instead of the Poisson's equation to find the electric field inside a uniformly charged sphere in example 8.3 on p. 136: $\mathrm{E}_{r}(r)=\rho r / 3 \varepsilon_{0}$. Hint: integrate both sides of equation $\nabla \cdot \mathrm{E}=\rho / \varepsilon_{0}$ over the volume of a sphere of radius $b<a$ to obtain $\mathrm{E}_{r}(b)=$ $\rho b / 3 \varepsilon_{0}$
