Math 335-002

Homework \#20

Problems 1-4 due April 16; problem 5 due April 18, 2007

1. Consider two point charges located at Cartesian points $(0,1,0)$ and $(1,0,0)$, with electric charges equal to Q and 2 Q , respectively. Find the potential and the electric field at point $(1,1,0)$ using the superposition principle $\left(\Phi=\Phi_{1}+\Phi_{2}\right.$, $\boldsymbol{E}=\boldsymbol{E}_{1}+\boldsymbol{E}_{2}$).
2. Consider an electromagnetic wave propagating in the z-direction, with the electric field polarized in the y-direction: $\overrightarrow{\mathbf{E}}=\overrightarrow{\mathbf{E}}(y)=\{0, A \cos (k z-\omega \mathrm{t}), 0\}$, where A is a constant wave amplitude, k is the wave number, and $\omega=k c$ is the angular frequency. Show that $\overrightarrow{\mathbf{E}}$ satisfies the wave equation. Calculate the corresponding magnetic field $\overrightarrow{\mathbf{B}}$ by calculating $\vec{\nabla} \times \overrightarrow{\mathbf{E}}$ and then integrating with respect to time, as we did in class: $\overrightarrow{\mathbf{B}}=\int \vec{\nabla} \times \overrightarrow{\mathbf{E}} d t$
3. The New York public radio broadcasts on the frequency $f=94 \mathrm{MHz}$. What is the wavelength of the radiowaves produced by the radio station?
4. Problems $8.2,8.4$, and 8.6 on pp. 139-140
