## Math 335-002

## Homework \#22

Due date: April 30, 2008

1. If $u_{i}$ is a vector, show that $\frac{\partial u_{i}}{\partial x_{j}}$ is a tensor of rank 2 (derive the transformation rule in terms of $\mathrm{L}_{i j}$ ).
2. Find the conductivity tensor of a material (defined by $\mathrm{j}_{i}=\sigma_{i k} \mathrm{E}_{k}$ ) given the following 3 measurements of current density at different values of electric field:
$\boldsymbol{j}=(0.8,0.2,0) \mathrm{A} / \mathrm{m}^{2}$ when $\boldsymbol{E}=(2,0,0) \mathrm{V} / \mathrm{m}$
$\boldsymbol{j}=(0.7,1.3,0) \mathrm{A} / \mathrm{m}^{2}$ when $\boldsymbol{E}=(1,3,0) \mathrm{V} / \mathrm{m}$
$\boldsymbol{j}=(0.9,0.6,0.5) \mathrm{A} / \mathrm{m}^{2}$ when $\boldsymbol{E}=(2,1,1) \mathrm{V} / \mathrm{m}$
Hint: determine the first column of $\sigma_{i k}$ using the $1^{\text {st }}$ measurement, then use these results along with the $2^{\text {nd }}$ measurement to determine the $2^{\text {nd }}$ column, and so on. Units of $\sigma_{i k}$ are $\left(\mathrm{A} / \mathrm{m}^{2}\right) /(\mathrm{V} / \mathrm{m})=\mathrm{A} /(\mathrm{V} \cdot \mathrm{m})=\mathrm{S} / \mathrm{m}$.
3. Show that the conductivity tensor you found in problem 2 will be diagonalized by a rotation around the $z$-axis by $\pi / 4$. To do this, use matrix multiplication to find $\sigma^{\prime}=\mathrm{L} \sigma \mathrm{L}^{\mathrm{T}}$ (the matrix form of the rule $\left.\sigma_{i j}^{\prime}=\mathrm{L}_{i k} \mathrm{~L}_{j l} \sigma_{k l}\right)$, where a rotation around the z -axis is given by

$$
L_{z}(\phi)=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Sketch or describe how the layers of the material are oriented with respect to the old and the new coordinate systems. Finally, use matrix multiplication to verify that $L^{\mathrm{T}}=\mathrm{I}$
4. Problems $7.12,7.13,7.15$ on p. 130

