Math 335-002

Homework \#6
Due date: February 13.

1. Find the Laplacian of the vector field $\overrightarrow{\mathbf{V}}(\overrightarrow{\mathbf{r}})=\left(x^{2}+z^{2}, \cos x+x^{2} e^{y}, \sin (x z)\right)$. Remember that the Laplacian of a vector field is a vector field.
2. Re-write the right-hand side of the equation $\nabla^{2} \overrightarrow{\mathbf{u}}=\vec{\nabla}(\vec{\nabla} \cdot \overrightarrow{\mathbf{u}})-\vec{\nabla} \times(\vec{\nabla} \times \overrightarrow{\mathbf{u}})$ using symbols div, grad and curl. Verify that this equation is satisfied for the vector field $\mathbf{u}=\left(y^{2}+x^{2}, x^{2}+z^{2}, z^{2}\right)$.
3. Translate the following suffix notation equation into vector notation:

$$
a_{j} b_{j} c_{i}+u_{i}=u_{k} b_{i} u_{k}
$$

4. Simplify and convert into vector form (eliminate Kronecker deltas one at a time - see Eq. 4.3 on page 68 , which defines the identity matrix):

$$
\delta_{k l} a_{l} \delta_{m j} a_{k} b_{m}
$$

