Math 335-002

Homework \#7
Due date: February 18 (not collected)
Note that on February 20 we are having our first Midterm Exam

1. Page 73: problems 4.1, 4.3, 4.4(a), 4.6, 4.8(a,b)
2. Page 82: problems 4.9, 4.10(a), 4.11
3. Re-write equation (a) in suffix notation and convert equation (b) into a vector equation (do not simplify):
a) $\boldsymbol{a} \cdot \boldsymbol{b} \times \boldsymbol{c}+(\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{a} \cdot \boldsymbol{b})=3|\boldsymbol{c}|^{2}$
b) $\varepsilon_{m k l} a_{n} d_{l} c_{k} b_{n}=a_{k} d_{k} c_{n} a_{m} b_{n}$
4. Simplify the following expressions:
a) $\delta_{k n} \delta_{j k} \delta_{n i}$
b) $\varepsilon_{j k m} \delta_{k n} \delta_{m j}$
5. Simplify and translate the following suffix notation equation into vector notation:

$$
d_{j} b_{k} d_{m} \delta_{m k}+b_{k} c_{m} d_{n} c_{k} \varepsilon_{j m n}=\delta_{k l} a_{m} \delta_{l j} a_{k} b_{m}
$$

6. Check the equation (4.12) on page 72 (the expansion of a product of alternating tensors in terms of the Kronecker delta tensor, same equation I've written in class) by calculating the left- and the right-hand sides of the equation for any two different sets of values of the free suffixes $(i, j, l$, and m). Choose at least one of these two suffix combinations in such a way that the two sides of the equation do not equal to zero.
