Quiz 8 * Math 335 * Prof. Victor Matveev

- 1. (16pts) Calculate the flux $\iint_{S} \mathbf{F} \cdot \mathbf{dS}$ of the vector field $\mathbf{F} = (y^2, y, 0)$ across the curved surface $x = y^2 + z^2$ constrained between the planes *x*=0 and *x*=2, with the normal pointing outward. Use Cartesian coordinates to parametrize this surface.
- 2. (4pts) Which of the following integrals is/are zero for any differentiable vector field \mathbf{F} or scalar field f? Explain *very briefly*. Hint: Stokes theorem may be helpful.

a)
$$\oint_C \mathbf{F} \cdot d\mathbf{r}$$
 b) $\oint_C \nabla \times \mathbf{F} \cdot d\mathbf{r}$ c) $\oint_C \nabla f \cdot d\mathbf{r}$ d) $\oiint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$