Quiz 8 * Math 335 * Prof. Victor Matveev

1. (16pts) Calculate the flux $\iint_{S} \mathbf{F} \cdot \mathbf{d S}$ of the vector field $\mathbf{F}=\left(y^{2}, y, 0\right)$ across the curved surface $x=y^{2}+z^{2}$ constrained between the planes $x=0$ and $x=2$, with the normal pointing outward. Use Cartesian coordinates to parametrize this surface.
2. (4pts) Which of the following integrals is/are zero for any differentiable vector field \mathbf{F} or scalar field f ? Explain very briefly. Hint: Stokes theorem may be helpful.
a) $\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$
b) $\oint_{C} \nabla \times \mathbf{F} \cdot \mathrm{d} \mathbf{r}$
c) $\oint_{C} \nabla f \cdot \mathrm{~d} \mathbf{r}$
d) $\oiint_{S} \nabla \times \mathbf{F} \cdot \mathbf{d S}$
