Math 335-002 * Spring 2015

Homework \#1

Due date: Thursday, January 29, 2015

Please show all work in detail to receive full credit

1. For $\overrightarrow{\mathbf{a}}=(1,-1,1)$ and $\overrightarrow{\mathbf{b}}=(0,2,1)$, find the area of the triangle formed by these two vectors, and find the projection of $\overrightarrow{\mathbf{a}}$ onto the direction of $\overrightarrow{\mathbf{b}}$.
2. Problem 31, page 30: An airplane is located at position $(3,4,5) \mathrm{km}$ at noon and traveling with velocity $400 \mathbf{i}+500 \mathbf{j}-\mathbf{k}$ (in units of $\mathrm{km} / \mathrm{hr}$). The pilot spots an airport at position $(23,29,0) \mathrm{km}$.
a. At what time is the plane directly over the airport?
b. How high above the airport will the plane be when it passes it?

Hint: write down the parametric equation of line describing the position of the airplane, $\overrightarrow{\mathbf{r}}(t)$; this will make the task much easier.
3. Find the equation of the plane that is perpendicular to, and cuts in half, the line connecting points $P(3,2,-4)$ and $Q(0,4,-1)$ (Hint: use the provided information to find the normal to this plane, $\overrightarrow{\mathbf{n}}$, and a point in this plane, $\overrightarrow{\mathbf{r}}_{o}$, and write down the equation of plane in the form $\overrightarrow{\mathbf{n}} \cdot\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{o}\right)=0$. Then, take the dot product to arrive at the final expression in the form $a x+b y+c z=d$
4. Draw any two non-zero vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ that satisfy the condition $|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}|^{2}=$ $|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2} \quad$ (hint: first, write the left-hand side of this expression as a dot product and expand to see what condition the two vectors have to satisfy).
5. Expand and/or simplify the following expressions (use the distributive property and other properties of the dot and cross vector products):
a) $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|^{2}+(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}})^{2}$
b) $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \times(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})$
c) $(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})$

