Math 335-002 Homework #10 * Spring 2015 * Prof. Victor Matveev

Please show all work in detail to receive full credit. Late homework is not accepted.

- 1. Use cylindrical coordinates to find the mass and the center of mass of an object with density $\delta(\mathbf{r}) = x^2 + y^2$ enclosed between the z=0 plane and the paraboloid $z = 4 x^2 y^2$.
- **2.** Find the line integral of the vector field $\mathbf{F} = (x^2, y^{1/3}, yz)$ along the curve given by $\mathbf{r}(t) = (t^2, e^{3t}, e^{2t}), t \in [0, 1]$.
- **3.** Calculate the line integral of the vector field $\mathbf{F} = (y^2, -x, 0)$ over each of the following three curves connecting points A = (1,0,0) and B = (0,1,0):
 - a. A horizontal line connecting point A to the origin (0,0,0), followed by a vertical line connecting the origin and point B.
 - b. A circular arc connecting points A and B (recall that trigonometric functions parametrize this circle)
 - c. A straight line connecting points A and B

Compare the three results. Is \mathbf{F} a conservative vector field? Calculate the curl of \mathbf{F} to check your conclusion.

4. Consider a conservative force $\mathbf{F} = -\nabla f$ with potential energy f given by $f = \ln(r)$, where $r = \sqrt{x^2 + y^2}$ is the norm of position vector in \mathbf{R}^2 . Use line integration to calculate the work done by this force over a parabolic path $y = x^2$, for x varying from 0 to 1. Compare this value with the difference in potential energy between the endpoints of the curve. Finally, find the curl of \mathbf{F} to show that it is irrotational (assume $F_3 = 0$)