Math 335-002 * Spring 2015 * Homework #11

Please show all work in detail to receive full credit. Late homework is not accepted.

- 1. Calculate the area of the side curved surface of the cone $x^2 + y^2 = z^2$ of height H ($z \le$ H), Hint: recall that $A(S) = \iint_S ||\mathbf{dS}|| = \iint_S ||\mathbf{T}_u \times \mathbf{T}_v|| du dv$. There are many good choices for parametrizing this surface (u and v could be Cartesian, spherical, or cylindrical variables).
- 2. Calculate the flux $\iint_{S} \mathbf{F} \cdot \mathbf{dS}$ of the vector field $\mathbf{F} = (e^{x}, y^{2}, x+y+z)$ across the surface *S* which is part of the coordinate plane z=0 lying between the curves y=x and $y=x^{3}$ in the positive quadrant ($x \ge 0, y \ge 0$), with the normal pointing upward. Hint: no special parametrization is required, since it's a flat coordinate surface.
- 3. Calculate the flux (the surface integral) $\iint_{S} \mathbf{F} \cdot \mathbf{dS}$ of a vector field $\mathbf{F} = (y, x, \ln(x+y))$, and *S* is the curved side of the cylinder $x^2 + y^2 = 1$ lying between the planes z=0 and z=1 in the octant $x \ge 0$, $y \ge 0$, $z \ge 0$, with the normal pointing outward. Use variables *y* (or *x*) and *z* to parametrize this curved surface: $\mathbf{dS} = (\mathbf{T}_y \times \mathbf{T}_z) dy dz$ (Hint: the position vector will contain a square root, but everything simplifies in the end).
- 4. Verify the Stokes theorem $\oint_{\partial S} \mathbf{F} \cdot \mathbf{dr} = \iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{dS}$ for the part of the curved surface

 $x^{2} + y + z = 4$ enclosed in the first octant, and the field $\mathbf{F} = (y^{2}, 0, 0)$ (hint: we started this problem in class).