## Math 335-002 * Spring 2015 * Homework \#11

Please show all work in detail to receive full credit. Late homework is not accepted.

1. Calculate the area of the side curved surface of the cone $x^{2}+y^{2}=z^{2}$ of height $\mathrm{H}(z \leq \mathrm{H})$, Hint: recall that $A(S)=\iint_{S}\|\mathbf{d} \mathbf{S}\|=\iint_{S}\left\|\mathbf{T}_{u} \times \mathbf{T}_{v}\right\| d u d v$. There are many good choices for parametrizing this surface ( $u$ and $v$ could be Cartesian, spherical, or cylindrical variables).
2. Calculate the flux $\iint_{S} \mathbf{F} \cdot \mathbf{d S}$ of the vector field $\mathbf{F}=\left(e^{x}, y^{2}, x+y+z\right)$ across the surface $S$ which is part of the coordinate plane $z=0$ lying between the curves $y=x$ and $y=x^{3}$ in the positive quadrant ( $x \geq 0, y \geq 0$ ), with the normal pointing upward. Hint: no special parametrization is required, since it's a flat coordinate surface.
3. Calculate the flux (the surface integral) $\iint_{S} \mathbf{F} \cdot \mathbf{d S}$ of a vector field $\mathbf{F}=(y, x, \ln (x+y))$, and $S$ is the curved side of the cylinder $x^{2}+y^{2}=1$ lying between the planes $z=0$ and $z=1$ in the octant $x \geq 0, y \geq 0, z \geq 0$, with the normal pointing outward. Use variables $y$ (or $x$ ) and $z$ to parametrize this curved surface: $\mathbf{d S}=\left(\mathbf{T}_{y} \times \mathbf{T}_{z}\right) d y d z$ (Hint: the position vector will contain a square root, but everything simplifies in the end).
4. Verify the Stokes theorem $\oint_{\partial S} \mathbf{F} \cdot \mathbf{d r}=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{d S}$ for the part of the curved surface $x^{2}+y+z=4$ enclosed in the first octant, and the field $\mathbf{F}=\left(y^{2}, 0,0\right)$ (hint: we started this problem in class).
