Math 335-002 * Spring 2015

Homework \#2
Due date: Thursday, February 5, 2015
Please show all work in detail to receive full credit

1. Simplify the following expression. Hint: use the BAC-CAB rule (see exercise 23 on page 50), and multiply the result by a. Bold letters indicate vectors.

$$
((a \times b) \times b) \times \mathbf{a}
$$

2. Problem 24(b), page 50:

Show that $(\mathbf{u} \times \mathbf{v}) \cdot\left(\mathbf{u}^{\prime} \times \mathbf{v}^{\prime}\right)=\left(\mathbf{u} \cdot \mathbf{u}^{\prime}\right)\left(\mathbf{v} \cdot \mathbf{v}^{\prime}\right)-\left(\mathbf{u} \cdot \mathbf{v}^{\prime}\right)\left(\mathbf{u}^{\prime} \cdot \mathbf{v}\right)$
Hint: you have to transform this expression twice: first, note that this can be viewed as a scalar triple product of three vectors, so you can use the cyclical property of the scalar triple product; then, use the BAC-CAB rule of triple vector product (see exercise 23 on page 50)
3. Problem 2, p. 58: Find the spherical coordinates of the Cartesian point $(\sqrt{6},-\sqrt{2},-2 \sqrt{2})$
4. Problem 7, page 59: describe and sketch the following surfaces, which are given in cylindrical or polar coordinates:
(a) $z=r^{2}$
(b) $\rho=4 \csc \phi \sec \theta$
(c) $r=4 \sin \theta$
(d) $\rho \sin \phi=2$

Hint: this is much easier than this looks. In (b) and (d), convert each equation to Cartesian coordinates (x, y, z) to identify these very simple surfaces.

