Math 335-002 * Homework #4 * Due date: February 19

Please show all work in detail to receive full credit. Late homework is not accepted.

- 1. Find the domain and range of scalar field in \mathbf{R}^2 , $f(x, y) = \ln(x y^2)$, and sketch its level curves. To do this, solve the equation f(x,y)=k=const, and plot these curves for several values of k
- 2. Find the gradient of a scalar field in \mathbf{R}^2 , $f(\mathbf{r}) = \mathbf{r} \cdot \mathbf{a}$, where \mathbf{a} is a constant vector. For $\mathbf{a} = (1, 1)$, sketch separately the scalar field (by showing its level curves) and its gradient. Keep in mind that the gradient is a vector field.
- 3. Find the gradient for a 3D scalar field in \mathbf{R}^3 , $f(\mathbf{r}) = z e^x (1 + \ln y)$ (it will have 3 components, since there are now 3 coordinates). Calculate *approximately* the value of the field $f(\mathbf{r})$ at point $\mathbf{r} = (0.05, 1.1, 1.2)$, using the linear approximation for the field around point $\mathbf{r}_0 = (0, 1, 1)$, and compare with exact value of this function

Reminder of linear approximation: $f(\mathbf{r}) \approx f(\mathbf{r_0}) + \nabla f(\mathbf{r_0}) \cdot (\mathbf{r} - \mathbf{r_0})$

4. Calculate the gradient of scalar field in \mathbf{R}^3 , $f(x, y, z) = \ln(\rho)$, where ρ is the distance from the origin (the spherical variable ρ), and express the result only in terms of position vector \mathbf{r} and its length, which is equal to ρ

Hint: recall the example we did in class, where we found the gradient of function $r = \sqrt{x^2 + y^2}$ in \mathbf{R}^2 to equal $\nabla r = \nabla \sqrt{x^2 + y^2} = \frac{\mathbf{r}}{\|\mathbf{r}\|} = \frac{\mathbf{r}}{r} = \hat{\mathbf{r}}$, where r is the polar variable, equal to distance from origin in in \mathbf{R}^2 , and \mathbf{r} is the position vector.