Math 335-002 * Homework \#5 * Due date: February 26

Please show all work in detail to receive full credit. Late homework is not accepted.

1. Sketch this space-curve in $\mathbf{R}^{2}: \mathbf{c}(t)=(2 \cos (t / 2), \sin (t / 2)), t \in \mathbf{R}$; calculate and plot its tangent vector at points $t=\pi$ and $t=2 \pi$.
2. Sketch this space-curve in $\mathbf{R}^{2}: \mathbf{c}(t)=\left(t^{3}, t^{2}\right), t \in[-2,2]$. Is this space-curve smooth for all values of t ?
3. Calculate the quadratic approximation to function $f(\mathbf{r})=\ln \left(e^{x+y}+x+z\right)$, and use it to estimate $f(0.02,0.02,0.02)$. Verify your answer by comparing with exact value of this function.

Quadratic approximation is given by:
$f\left(\mathbf{r}_{o}+\mathbf{h}\right) \approx f\left(\mathbf{r}_{o}\right)+D f\left(\mathbf{r}_{o}\right) \cdot \mathbf{h}+\frac{1}{2} \mathbf{h}^{T} D^{2} f\left(\mathbf{r}_{o}\right) \mathbf{h}$
where $D f\left(\mathbf{r}_{o}\right) \equiv \nabla f\left(\mathbf{r}_{o}\right)$ and $\mathbf{h}^{T} D^{2} f\left(\mathbf{r}_{o}\right) \mathbf{h} \equiv\left(h_{1}, h_{2}, h_{3}\right)\left(\begin{array}{ccc}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial x \partial z} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}} & \frac{\partial^{2} f}{\partial y \partial z} \\ \frac{\partial^{2} f}{\partial z \partial x} & \frac{\partial^{2} f}{\partial z \partial y} & \frac{\partial^{2} f}{\partial z^{2}}\end{array}\right)_{\mathbf{r}_{o}}\left(\begin{array}{l}h_{1} \\ h_{2} \\ h_{3}\end{array}\right)$

