Math 335-002 * Homework \#6 * Due date: March 5, 2015

Please show all work in detail to receive full credit. Late homework is not accepted.

1. Section 3.1:

A function satisfying the Laplace's equation is called harmonic. Which of the following functions is/are harmonic?
(a) $f(x, y)=\cos (2 x) \sinh (2 y)$
(b) $f(x, y)=\cos (3 x) \exp (-2 y)$
(c) $f(x, y)=\log \left(x^{2}+y^{2}\right)$
2. Problem 3.1.12(b), page 157: show that $T(x, y, t)=e^{-k t}(\cos x+\cos y)$ satisfies the two-dimensional heat equation:

$$
\frac{\partial T}{\partial t}=k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)
$$

3. Problem 3.3.6, page 182: Find and classify the critical points (i.e. determine whether they are local maxima, minima, or saddles):

$$
f(x, y)=3 x^{2}+2 x y+2 x+y^{2}+y+4
$$

4. Problem 3.3.44, page 184: Find absolute (global) extreme points of function $f(x, y)=1+x y+x-2 y$ on a triangular region with vertices $(1,-2),(5,-2)$ and $(1,2)$

Hint: one of the three boundaries will require a parameterization using equation of line (you can use equation of line in any form you like).
5. Find the coefficient k in the following "relativistic" correction to the familiar expression for the kinetic energy of a body of resting mass m_{0} moving with speed v, by Taylor-expanding the following relativistic expression to second order in variable $x=(v / c)^{2}$:

$$
E=m c^{2}=\frac{m_{0} c^{2}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \approx \underbrace{m_{o} c^{2}}_{\substack{\text { Rest } \\
\text { Energy }}}+\underbrace{\frac{m_{o} v^{2}}{2}+k v^{4}}_{\begin{array}{c}
\text { Kinetic } \\
\text { Energy }
\end{array}}
$$

Hint: I did this in class, you only have to find the coefficient k of the correction term using the next Taylor term in the expansion of $(1-x)^{-1 / 2}$

