Math 335-002 * Homework \#7 * Due Wednesday March 11, 2015
Please show all work in detail to receive full credit. Late homework is not accepted.

1. Section 4.1: Use vector calculus to show that an object moving at constant speed has velocity that is perpendicular to the force acting on this object.

Hint: we solved an almost identical problem in class: differentiate $\|\mathbf{v}\|^{2}$ and apply differentiation product rule to immediately obtain the desired result
2. Section 4.1:

A particle is moving along a circle in the plane $\mathbf{r}(t)=(R \cos \omega t, R \sin \omega t)$ under the influence of force $\mathbf{F}(\mathbf{r})=-\nabla V(\mathbf{r})$, where $V(\mathbf{r})=k \ln r$ is the potential energy. Here k is a constant, and $r \equiv\|\mathbf{r}\|=\sqrt{x^{2}+y^{2}}$. Find the relationship (equation) connecting constant k, the radius of orbit R, and angular velocity ω

Hint: apply the second Newton's law: $m \mathbf{a}(t)=\mathbf{F}(\mathbf{r}(t)) \Rightarrow m \frac{d^{2} \mathbf{r}}{d t^{2}}=-\nabla V(\mathbf{r}(t))$; equating the two sides of this equation immediately gives the result. Review the last problem of homework $\# 4$ for the gradient calculation.
3. Section 4.2 :

Find length or arc (curve) given by $\mathbf{c}(t)=\left(t^{2} \sin t, t^{2} \cos t, t^{3}\right)$ on the interval $t \in[0, \pi]$. Hint: arc-length is given by $\int_{a}^{b}\left\|\frac{d c}{d t}\right\| d t$
4. Sections 4.3-4.4:

Find the divergence and curl of the vector field $\mathbf{F}(\mathbf{r})=\left(y^{2}, x^{2}, 0\right)$, and sketch this field in the $x-y$ plane (since $F_{3}=0$, it lies entirely in the x - y plane).
5. Sections 4.3-4.4: Calculate the divergence and the curl of the vector field

$$
\mathbf{F}(\mathbf{r})=(y \cos x, \sin (z x), \ln (y \sin z))
$$

$\operatorname{div} \mathbf{F} \equiv \nabla \cdot \mathbf{F} \equiv\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(F_{1}, F_{2}, F_{3}\right) \equiv \frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}$
$\operatorname{curl} \mathbf{F} \equiv \nabla \times \mathbf{F} \equiv\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ F_{1} & F_{2} & F_{3}\end{array}\right|=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)$

