Math 335-002 * Homework \#8 * Due Monday March 30, 2015
Please show all work in detail to receive full credit. Late homework is not accepted.

1. Let \mathbf{F} and \mathbf{G} denote two differentiable vector fields in \mathbf{R}^{3}. Prove the following product rule by calculating the left-hand side and the right-hand side of this equation in term of components of these fields, F_{k} and G_{k} (where $k=1,2,3$)

$$
\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \operatorname{curl} \mathbf{F}-\mathbf{F} \cdot \operatorname{curl} \mathbf{G}
$$

2. Suppose f is a C^{2} (twice differentiable) scalar field in \mathbf{R}^{3}. Which of the following expressions are meaningful, and which are nonsence? For those which are meaningful, decided whether the expression defines a scalar field or a vector field:
a) $\operatorname{curl}(\operatorname{grad} f)$
b) $\operatorname{grad}(\operatorname{curl} f)$
c) $\operatorname{div}(\operatorname{grad} f)$
d) $\operatorname{grad}(\operatorname{div} f)$
e) $\operatorname{curl}(\operatorname{div} f)$
f) div (curl f)
g) $\operatorname{grad}(\operatorname{grad} f)$
3. Sketch the region of integration, change the order of integration, and evaluate:

$$
\int_{0}^{3} \int_{y^{2}}^{9} y \cos \left(\frac{\pi x^{2}}{2}\right) d x d y
$$

4. Consider the integral $\iint_{D} \frac{y^{3} d x d y}{\sqrt{x^{2}+y^{2}}}$, where integration region D is determined by the conditions $\frac{1}{2} \leq y \leq 1, x^{2}+y^{2} \leq 1$, and $x \geq 0$.
a) Sketch the region of integration
b) Set up limits of integration for two different integration orders
c) Calculate this integral using integration order ($d y d x$).
