1. Let **F** and **G** denote two differentiable vector fields in \mathbb{R}^3 . Prove the following product rule by calculating the left-hand side and the right-hand side of this equation in term of components of these fields, F_k and G_k (where k=1,2,3)

$$\operatorname{div}(\mathbf{F}\times\mathbf{G})=\mathbf{G}\cdot\operatorname{curl}\mathbf{F}-\mathbf{F}\cdot\operatorname{curl}\mathbf{G}$$

- 2. Suppose *f* is a C^2 (twice differentiable) scalar field in \mathbb{R}^3 . Which of the following expressions are meaningful, and which are nonsence? For those which are meaningful, decided whether the expression defines a scalar field or a vector field:
 - a) $\operatorname{curl}(\operatorname{grad} f)$
 - b) grad (curl *f*)
 - c) div $(\operatorname{grad} f)$
 - d) grad $(\operatorname{div} f)$
 - e) $\operatorname{curl} (\operatorname{div} f)$
 - f) div $(\operatorname{curl} f)$
 - g) grad $(\operatorname{grad} f)$
- 3. Sketch the region of integration, change the order of integration, and evaluate:

$$\int_0^3 \int_{y^2}^9 y \cos\left(\frac{\pi x^2}{2}\right) dx \, dy$$

4. Consider the integral $\iint_{D} \frac{y^3 \, dx \, dy}{\sqrt{x^2 + y^2}}$, where integration region *D* is determined by the

conditions $\frac{1}{2} \le y \le 1$, $x^2 + y^2 \le 1$, and $x \ge 0$.

- a) Sketch the region of integration
- b) Set up limits of integration for two different integration orders
- c) Calculate this integral using integration order (dy dx).