Math 335-002
 Homework \#9A * Spring 2015 * Prof. Victor Matveev

Please show all work in detail to receive full credit. Late homework is not accepted.

1. Use polar coordinates to integrate $\iint_{D} \frac{\ln \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}} d x d y$ over a ring domain D defined by $1 \leq x^{2}+y^{2} \leq 4$. Hint: recall that the Jacobian of polar coordinate system equals r.
2. Calculate the integral $\iint_{D} \sin (\sqrt{x y}) d x d y$ over a region D enclosed between curves $y=x$, $y=4 x, x y=1$ and $x y=4$. Use transformation $u=\sqrt{\frac{y}{x}}, v=\sqrt{x y}$ (you will see that it makes the Jacobian calculation slightly easier compared to the substitution that we used in class).
3. Find the mass of a hemisphere of radius 1 defined by $x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$, if its density is described by the function $\delta(x, y, z)=x^{2} z$. Hint: use integration in spherical coordinates.
