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I. DIVERGENCE: DEFINITION 

 
Consider a vector field F(r) defined within some region in R3 (everything generalizes to Rn however). 

Divergence of a vector field at a given point ro is a scalar quantifying the local expansion of a 
vector field in the neighborhood of that point. It is therefore defined as the flux of this field out of 
any closed surface surrounding any point ro, per unit volume, as the volume enclosed by this 
closed surface approaches zero:  
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where r0 remains an interior point of V as the volume measure approaches zero. Here dS = n dS, where 
n is the unit normal field (facing outward) on the surface V , and dS is the differential measure on this 
surface area. 

 
Theorem 1 

 
If a vector field F is continuously differentiable at point ro, by applying the definition to the particular case 
of a cube volume, and taking the limit of the sides of the cube approaching zero, in R3 one can easily 
prove that 
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Note that this is not a definition: definition of divergence does not require the field to be differentiable. 
 

II. DIVERGENCE THEOREM 

 
Theorem 2 (Divergence theorem) 

Consider a connected bounded (i.e. compact) volume V with a piece-wise smooth boundary surface V , 
and let dS=n dS denote the outward normal vector field multiplied by surface area differential. Further, 
suppose vector field F is continuously differentiable (C1) within this volume V. Then the following result 
holds: 
 

 
 
Example 1: If we apply the divergence theorem to vector field F which is equal to position vector field r, 
we obtain: 
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This means that the volume enclosed by the surface equals the flux of position vector field out of this 
surface, divided by the number of dimensions (here, 3). This is a highly non-trivial topological result.



III. DIVERGENCE THEOREM AND CONTINUITY / CONSERVATION 

 
The divergence theorem is intricately connected to the continuity/conservation condition arising in a wide 
variety of physical problems. Consider a very general problem of flow of any quantity such as mass, 
charge, molecule number (#), or any other substance: 

    •  ρ(r, t)  = density of charge (or mass or # of molecules) per unit volume 

    •  Q(t) = total charge (or mass or # of molecules) within a connected bounded volume V 

    •  J(r, t)  = flux of charge (or mass or #) per unit time per unit area perpendicular to the flow direction. 
                     Flux is also known as current density (current per unit area), in the case of electric current. 

By these definitions, the following two relationships between these three quantities have to hold: 
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   J dS    (total flux out of any volume V = rate of decrease per unit time within V)  

Note that relationship 1 leads to the following:  
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Further, we can use the divergence theorem in relationship 2, leading to  
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Combining results 3 and 4, we obtain 
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Subtracting the two sides of this equation yields 
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Since this integral is zero for any integration domain (volume) V, the integrand has to be zero as well, 
leading to the well-known and very general continuity condition: 

 

Continuity / conservation equation: 
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Note that if we have information about the velocity field v(r,t), then we have the following additional 
relationship between flux (current density) and the density: 
 

J(r, t) = ρ(r, t) v(r, t) 
 



Check the physical units to understand this better: 
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This allows us to write the conservation condition as 
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Further, by the chain rule this can be written as 
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If density is constant  0, 0t    , i.e. the flow is incompressible, then we obtain a well-known 

result that  
0v   

IV. APPLICATION 1: DIFFUSION AROUND A POINT SOURCE 

Consider diffusion of some substance with volume concentration of C(r,t), with a single source at the 

origin characterized by current of C in units of molecule number (say, expressed in moles) per unit time: 
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Integrate both sides of the PDE over a sphere of radius R centered at the source: 
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Recalling that Q(t) =  ,
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C t dV r  and using the divergence theorem, we obtain  
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In case of radial symmetry we have    , ,  and
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This time-dependent equation is not simple, but it allows to obtain the equilibrium solution quite readily: 
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V. APPLICATION II: POTENTIAL OF POINT CHARGE 

 
The Gauss law is the first in the system of Maxwell’s equations, connecting electric field and charge 
density. In SI units, it reads: 
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If we consider a stationary point charge at the origin, this becomes 
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Integrate both sides of the PDE over a sphere of radius R centered at the source: 
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Using the divergence theorem, we obtain  
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Now, note that both dS and E have the same orientation, pointing away from the origin; and that the 
magnitude of E depends only on the distance from the point charge: 
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Therefore, the dot product in the flux integral simplifies: 
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Thus, we obtain:  
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NOTE: the same derivation holds for a sphere of radius < R with any angle-independent charge 
distribution (the entire derivation is unchanged). 


