
 

Math 613 * Fall 2018 * Victor Matveev 

Derivation of the Navier-Stokes Equation 

 

1. Relationship between force (stress), stress tensor, and strain: 

 Consider any sub-volume inside the fluid, with variable unit normal n to the surface of this sub-volume. 

 Definition: Force per area at each point along the surface of this sub-volume is called the stress vector T.  

When fluid is not in motion, T is pointing parallel to the outward normal n, and its magnitude equals pressure p: 
T = p n. However, if there is shear flow, the two are not parallel to each other, so we need a marix (a tensor), 
called the stress-tensor , to express the force direction relative to the normal direction, defined as follows: 

or     T
k j j kT n  T n    

As we will see below, σ is a symmetric matrix, so we can also write  

or     k k j jT n  T n  

The difference in directions of T and n is due to the non-diagonal “deviatoric” part of the stress tensor, j k , 

which makes the force deviate from the normal: 

j k j k j kp       where p is the usual (scalar) pressure  

From general considerations, it is clear that the only source of such “skew” / ”deviatoric” force in fluid is the 

shear component of the flow, described by the shear (non-diagonal) part of the “strain rate” tensor k je : 
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Note: the funny construct 2 / 3   guarantees that the part of  proportional to  has a zero trace. 

The two terms above represent the most general (and the only possible) mathematical expression that 
depends on first-order velocity derivatives and is invariant under coordinate transformations like rotations. 

Thus, we have:  
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Proportionality constant μ between shear stress and the shear strain rate is called dynamic viscosity. 

Proportionality constant  between compression stress and compression strain rate is volume viscosity. 

 

  



2. Second Newton’s law: The Cauchy Momentum Balance Equation 

The Navier-Stokes equation represents the 2nd Newton’s law: the rate of change of the integral of momentum 
volume density k kX u  equals sum of forces. The derivation is also analogous to the derivation of the 

continuity / mass conservation law (see older hand-out / lecture notes):    SOURCEt     u . 

https://web.njit.edu/~matveev/Courses/M613_F18/DivergenceTheorem_DiffusionEquation_2018.pdf 

According to the 2nd Newton’s law, the source of the momentum (mass times velocity) change is the sum of 
forces. Thus, our starting point is the conservation of each component of momentum, k kX u : 
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Here we used the fact that Xk leaves the volume when being carried out by the velocity field u. The forces are: 

 BODY
kf  is the kth component of the  body force per unit volume; for the case of gravity we have BODY

k kf g  

 SURFACE
kf  is the kth component of the surface force per unit area, the stress, so SURFACE

k k j j kf T n    

Therefore, we obtain:  
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Here we introduced the notation k j j k kT n   n σ , to make the application of the Divergence Theorem more 

obvious. Let’s now apply the divergence theorem to the two surface integrals in the above momentum equation: 
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Since the volume we have chosen is arbitrary, we can equate the integrands: 
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Now, all that is left is to plug in the definition k kX u , and the stress-strain relationship: 
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Taking into account incompressive fluid case, =const, 0  u , performing some simplifications and converting 
back to vector notation, we obtain the Navier-Stokes equation of incompressible fluid flow (with gravity): 
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HOMEWORK: starting with the equation in the red box, expand derivatives of all products, and write down the 
Navier Stokes equation for the case of compressible fluid (non-constant ). Make sure to convert the final result 
to vector notation. The result should contain gradients, divergences, and Laplacian(s). 


