Math 613 * Fall 2018 * Final Examination * Victor Matveev

Note: bold quantities are vectors or vector fields; *italics* denote scalars or scalar fields.

1. (10pts) Consider the vector field $\mathbf{u}(\mathbf{r}) = \langle e^{x+y}, y^2, 0 \rangle$. Compute the following derivatives (all of which appear in the generalized compressible Navier-Stokes equation):

a)
$$(\mathbf{u} \cdot \nabla)\mathbf{u}$$
 b) $\nabla(\nabla \cdot \mathbf{u})$ c) $\Delta \mathbf{u} \equiv \nabla^2 \mathbf{u}$

2. (12pts) Non-dimensionalize the following one-dimensional advection-diffusion-absorption equation for volume mass density function $\rho(\mathbf{r}, t)$, reducing the number of parameters as much as possible:

$$\begin{cases} \frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2} + u_0 \frac{\partial \rho}{\partial x} - \gamma \rho \quad \left(-\infty < x < \infty, \ t > 0 \right) \\ \rho \left(x \to \pm \infty, \ t \right) = \rho_0 = const \end{cases}$$

Here D is the diffusion coefficient, γ -const is the absorption rate, and u_0 -const is the externally imposed flow velocity.

3. (16pts) Consider the following 2D flow:

$$\begin{cases} \frac{dx}{dt} = y + x^2\\ \frac{dy}{dt} = x + y^2 \end{cases}$$

- a) Find all equilibria of this system, and analyze their stability using linear stability analysis.
- b) Sketch the nullclines.
- c) Make a rough plot of the flow field. Hint: start by showing the flow along the coordinate axes and the nullclines
- 4. (18pts) Consider the continuous-time stochastic process describing the following chemical reaction:

$$\left\{A \xrightarrow{k_D} \emptyset; \emptyset \xrightarrow{k_B} A\right\}$$

- a) Write down the Chemical Master Equations (CME).
- b) Find the equation for the evolution of the second moment, $\frac{d\langle n^2 \rangle}{dt}$.
- c) Find the partial differential equation (PDE) for the probability-generating function, $F(z,t) = \sum_{n=1}^{\infty} p_n(t) z^n$
- d) Find the equilibrium probability distribution. Make sure that completeness is satisfied: $\sum_{n=0}^{\infty} p_n = 1$
- 5. (16pts) Convert to index notation, then use index notation to expand or simplify, and finally convert the result back to vector notation (here U is a vector field, ϕ is a scalar field, and **r** is the position vector: $\mathbf{r} \equiv x_j$, j = 1, 2, 3):

a)
$$\nabla \times (\phi \mathbf{U})$$
 b) $\nabla \times (\mathbf{r} \times \mathbf{U})$ (hints: $\partial_k x_j = \delta_{kj}$; $\varepsilon_{ijk} \varepsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}$)

6. (16pts) Consider the following advection equation (assume that the equation is already non-dimensionalized):

$$\begin{cases} \frac{\partial \rho}{\partial t} + 3xt^2 \frac{\partial \rho}{\partial x} = 0 \quad (t > 0) \\ \rho(x_0, 0) = \rho_o(x_0) = x_0^2 \quad (-\infty < x_0 < +\infty) \end{cases}$$

- a) Find and plot the characteristics corresponding to 3 values of x_0 : $x_0 = -1$, $x_0 = 0$, $x_0 = 1$.
- **b)** Is there a shock-wave / break-up?
- c) Find the solution, and make a rough plot of $\rho(x, t)$ at t=1 and at t=2.
- 7. (12pts) Consider a charged spherical shell, with charge distributed within $r_0 < r < r_1$ according to

$$\rho(\mathbf{r}) = \rho(r) = \begin{cases} \gamma r, & r_0 < r < r_1 \quad (\gamma = const) \\ 0, & r < r_0 \quad \text{or } r > r_1 \end{cases}$$

Apply the divergence theorem to the Gauss law $\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$ to find the electric field $\mathbf{E}(r)$ in three regions: (a) $r < r_0$ (b) $r_0 < r < r_1$ (c) $r > r_1$