Math 613 * Fall 2018 * Final Examination * Victor Matveev

Note: bold quantities are vectors or vector fields; italics denote scalars or scalar fields.

1. (10pts) Consider the vector field $\mathbf{u}(\mathbf{r})=\left\langle e^{x+y}, y^{2}, 0\right\rangle$. Compute the following derivatives (all of which appear in the generalized compressible Navier-Stokes equation):
a) $(\mathbf{u} \cdot \nabla) \mathbf{u}$
b) $\nabla(\nabla \cdot \mathbf{u})$
c) $\Delta \mathbf{u} \equiv \nabla^{2} \mathbf{u}$
2. (12pts) Non-dimensionalize the following one-dimensional advection-diffusion-absorption equation for volume mass density function $\rho(\mathbf{r}, t)$, reducing the number of parameters as much as possible:

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}=D \frac{\partial^{2} \rho}{\partial x^{2}}+u_{0} \frac{\partial \rho}{\partial x}-\gamma \rho \quad(-\infty<x<\infty, t>0) \\
\rho(x \rightarrow \pm \infty, t)=\rho_{0}=\text { const }
\end{array}\right.
$$

Here D is the diffusion coefficient, $\gamma=$ const is the absorption rate, and $u_{0}=$ const is the externally imposed flow velocity.
3. (16pts) Consider the following 2D flow:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y+x^{2} \\
\frac{d y}{d t}=x+y^{2}
\end{array}\right.
$$

a) Find all equilibria of this system, and analyze their stability using linear stability analysis.
b) Sketch the nullclines.
c) Make a rough plot of the flow field. Hint: start by showing the flow along the coordinate axes and the nullclines
4. (18pts) Consider the continuous-time stochastic process describing the following chemical reaction:

$$
\left\{A \xrightarrow{k_{0}} \varnothing ; \varnothing \xrightarrow{k_{B}} A\right\}
$$

a) Write down the Chemical Master Equations (CME).
b) Find the equation for the evolution of the second moment, $\frac{d\left\langle n^{2}\right\rangle}{d t}$.
c) Find the partial differential equation (PDE) for the probability-generating function, $F(z, t)=\sum_{n=0}^{\infty} p_{n}(t) z^{n}$
d) Find the equilibrium probability distribution. Make sure that completeness is satisfied: $\sum_{n=0}^{\infty} p_{n}=1$
5. (16pts) Convert to index notation, then use index notation to expand or simplify, and finally convert the result back to vector notation (here \mathbf{U} is a vector field, ϕ is a scalar field, and \mathbf{r} is the position vector: $\mathbf{r} \equiv x_{j}, j=1,2,3$):
a) $\nabla \times(\phi \mathbf{U})$
b) $\nabla \times(\mathbf{r} \times \mathbf{U})$
(hints: $\left.\partial_{k} x_{j}=\delta_{k j} ; \varepsilon_{i j k} \varepsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l}\right)$
6. (16pts) Consider the following advection equation (assume that the equation is already non-dimensionalized):

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+3 x t^{2} \frac{\partial \rho}{\partial x}=0 \quad(t>0) \\
\rho\left(x_{0}, 0\right)=\rho_{o}\left(x_{0}\right)=x_{0}^{2} \quad\left(-\infty<x_{0}<+\infty\right)
\end{array}\right.
$$

a) Find and plot the characteristics corresponding to 3 values of $x_{0}: x_{0}=-1, x_{0}=0, x_{0}=1$.
b) Is there a shock-wave / break-up?
c) Find the solution, and make a rough plot of $\rho(x, t)$ at $t=1$ and at $t=2$.
7. (12pts) Consider a charged spherical shell, with charge distributed within $r_{0}<r<r_{1}$ according to

$$
\rho(\mathbf{r})=\rho(r)= \begin{cases}\gamma r, & r_{0}<r<r_{1} \quad(\gamma=\text { const }) \\ 0, & r<r_{0} \text { or } r>r_{1}\end{cases}
$$

Apply the divergence theorem to the Gauss law $\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}$ to find the electric field $\mathbf{E}(r)$ in three regions:
(a) $r<r_{0}$
(b) $r_{0}<r<r_{1}$
(c) $r>r_{1}$

