Math 613 * Fall 2018 * Victor Matveev Homework 1: units, nondimensionalization, and scaling

1. Non-dimensionalize the bacterial population growth model, examined in class, using the following scales: [n]=K, $[t]=1/(\alpha K)$

$$\begin{cases} \frac{dn}{dt} = \alpha n (K - n) \quad (t > 0) \\ n (0) = n_o \end{cases}$$

- **2.** Consider the drag force F_D on a sphere of radius *R* moving with speed *v* in a fluid with viscosity μ and mass density ρ .
 - a) Figure out the units of μ by examining the units in the Navier-Stokes equation for incompressible fluid (this does not require any understanding of this equation beyond partial differentiation; recall that units of *all* terms have to equal to each other in any equation:

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}\right) = -\nabla \boldsymbol{p} + \mu \nabla^2 \mathbf{v}$$

- b) Find the unique dimensionless quantity relating (R, v, μ , ρ) and proportional to v, using the Buckingham's theorem (i.e. find the unique solution to $\Pi = v^{\alpha} R^{\beta} \mu^{\gamma} \rho^{\delta}$ with $\alpha = 1$). This quantity is called the Reynolds number.
- c) Out of given 5 quantities (F_D , R, v, μ , ρ), we can only form 5 3 = 2 dimensionless quantities, given fundamental units of (M,L,T) in this equation. One of these we derived in class, $\Pi_1 = F/(v^2 \rho R^2)$, to obtain the high velocity (high Reynolds number) limit for $F_D(v)=C v^2 \rho R^2$. Apply the Buckingham's Π Theorem (i.e. consider the linear homogeneous system for unit powers) to find the second dimensionless quantity Π_2 that also contains F_D and v, in order to find the low Reynolds number (low-velocity) drag force dependence on velocity (i.e. find the unique solution to $\Pi_2 = F_D^{\alpha} R^{\beta} v^{\gamma} \mu^{\delta} \rho^{\epsilon}$ with $\alpha = 1$, and $\gamma \neq 0$ since we are interested in F_D as function of v).
- 3. Consider the following model of damped pendulum (easily found from Newton's law and the result of problem 2c)

$$\begin{cases} mL \frac{d^2\theta}{dt^2} + \gamma \frac{d\theta}{dt} + mg\sin\theta = 0\\ \theta(0) = \theta_o\\ \frac{d\theta}{dt}(0) = \omega_o \end{cases}$$

Here *m* is the mass at the end of the pendulum of length *L*, *g* is the acceleration of free fall, γ is the drag parameter, and θ is the angle with respect to the vertical.

- a) What are the units of the drag parameter, γ ? Examine units of other terms in this equation to answer.
- b) How many model parameters can we eliminate by non-dimensionalization? Hint: although mathematically angles expressed in radians are non-dimensional, you can formally consider radians as a unit, which allows to rescale the angle by its initial value, θ_0 .
- c) How many different choices for time scale [t] can you construct?

Hint: consider all independent solutions to $\Pi = t/[t] = t m^{\alpha} L^{\beta} \gamma^{\delta} g^{\varepsilon} \omega_{o}^{\lambda}$

d) Perform a full non-dimensionalization of this system using any time scale **except for** $[t]=1/\omega_0$ that is considered in the textbook. Try to choose the non-dimensionalization that gives the simplest form of the differential equation.