Math 613 * Fall 2018 * Victor Matveev

Homework 1: units, nondimensionalization, and scaling

1. Non-dimensionalize the bacterial population growth model, examined in class, using the following scales: $[n]=K$, $[t]=1 /(\alpha K)$

$$
\left\{\begin{array}{l}
\frac{d n}{d t}=\alpha n(K-n) \quad(t>0) \\
n(0)=n_{0}
\end{array}\right.
$$

2. Consider the drag force F_{D} on a sphere of radius R moving with speed v in a fluid with viscosity μ and mass density ρ.
a) Figure out the units of μ by examining the units in the Navier-Stokes equation for incompressible fluid (this does not require any understanding of this equation beyond partial differentiation; recall that units of all terms have to equal to each other in any equation:

$$
\rho\left(\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right)=-\nabla p+\mu \nabla^{2} \mathbf{v}
$$

b) Find the unique dimensionless quantity relating (R, v, μ, ρ) and proportional to v , using the Buckingham's theorem (i.e. find the unique solution to $\Pi=v^{\alpha} R^{\beta} \mu^{\vee} \rho^{\delta}$ with $\alpha=1$). This quantity is called the Reynolds number.
c) Out of given 5 quantities ($F_{\mathrm{D}}, R, v, \mu, \rho$), we can only form $5-3=2$ dimensionless quantities, given fundamental units of (M, L, T) in this equation. One of these we derived in class, $\Pi_{1}=F /\left(v^{2} \rho R^{2}\right)$, to obtain the high velocity (high Reynolds number) limit for $F_{D}(v)=C v^{2} \rho R^{2}$. Apply the Buckingham's Π Theorem (i.e. consider the linear homogeneous system for unit powers) to find the second dimensionless quantity Π_{2} that also contains F_{D} and v, in order to find the low Reynolds number (low-velocity) drag force dependence on velocity (i.e. find the unique solution to $\Pi_{2}=F_{D}^{\alpha} R^{\beta} v^{\gamma} \mu^{\delta} \rho^{\varepsilon}$ with $\alpha=1$, and $\gamma \neq 0$ since we are interested in F_{D} as function of v).
3. Consider the following model of damped pendulum (easily found from Newton's law and the result of problem 2c)

$$
\left\{\begin{array}{l}
m L \frac{d^{2} \theta}{d t^{2}}+\gamma \frac{d \theta}{d t}+m g \sin \theta=0 \\
\theta(0)=\theta_{o} \\
\frac{d \theta}{d t}(0)=\omega_{o}
\end{array}\right.
$$

Here m is the mass at the end of the pendulum of length L, g is the acceleration of free fall, γ is the drag parameter, and θ is the angle with respect to the vertical.
a) What are the units of the drag parameter, γ ? Examine units of other terms in this equation to answer.
b) How many model parameters can we eliminate by non-dimensionalization? Hint: although mathematically angles expressed in radians are non-dimensional, you can formally consider radians as a unit, which allows to rescale the angle by its initial value, θ_{0}.
c) How many different choices for time scale [t] can you construct?

Hint: consider all independent solutions to $\Pi=\mathrm{t} /[\mathrm{t}]=t m^{\alpha} L^{\beta} \gamma^{\delta} \mathrm{g}^{\varepsilon} \omega_{0}{ }^{\lambda}$
d) Perform a full non-dimensionalization of this system using any time scale except for $[t]=1 / \omega_{0}$ that is considered in the textbook. Try to choose the non-dimensionalization that gives the simplest form of the differential equation.

