Math 613 * Fall 2018 * Victor Matveev * Homework 10

1. Divergence Theorem

Explain why question 2(b) of homework 9 cannot be solved using the divergence theorem, without using linearity to break up the problem first. Namely, consider the same problem with only two sources, positioned at locations $\mathbf{r}_{1,2}$:

$$
\nabla \cdot \overrightarrow{\mathbf{J}}=\sigma_{1} \delta\left(\mathbf{r}-\mathbf{r}_{1}\right)+\sigma_{2} \delta\left(\mathbf{r}-\mathbf{r}_{2}\right)
$$

Note that in homework 9 the flux field (the current) is $\overrightarrow{\mathbf{J}}=\nabla\left(D_{C} C+D_{B} B^{*}\right)$, but that's unimportant here. Now, integrate both sides of this equation over some volume (describe the volume that you choose):

$$
\iiint_{V} \nabla \cdot \overrightarrow{\mathbf{J}} d V=\iiint_{V}\left[\sigma_{1} \delta\left(\mathbf{r}-\mathbf{r}_{1}\right)+\sigma_{2} \delta\left(\mathbf{r}-\mathbf{r}_{2}\right)\right] d V
$$

Explain carefully why this doesn't lead to any useful result (i.e. explain exactly what part of the calculation does not lead to a simple answer when we have two sources instead of one source).

2. Navier-Stokes Equation

Use suffix notation to repeat the last steps in the derivation of the Navier-Stokes equation, starting with the equation in the red box on the 2nd page of the notes, for the case of compressible fluid, and expanding derivatives of all products. Make sure the final expression is in vector form.

Notes: https://web.njit.edu/~matveev/Courses/M613 F18/M613-Derivation-Navier-Stokes-Equation.pdf
3. Two-dimensional flows, streamlines and "convective acceleration"

Consider a stationary two-dimensional flow field $\mathbf{u}(\mathbf{r})=\left(-\frac{\alpha y}{x^{2}+y^{2}}, \frac{\alpha x}{x^{2}+y^{2}}, 0\right)$
a) Show that this flow is incompressible. Therefore, there exists a "stream function" ψ such that $\mathbf{u}(\mathbf{r})=\left(-\frac{\partial \psi}{\partial y}, \frac{\partial \psi}{\partial x}, 0\right)$. Find this function ψ by integration. Side note: the relationship between \mathbf{u} and ψ can also be written as $\mathbf{u}(\mathbf{r})=-\nabla \times\langle 0,0, \psi(\mathbf{r})\rangle$ (some books have the opposite signs)
b) The curves of constant ψ represent the streamlines of the flow: sketch some of these curves $\psi=$ const in the plane.
c) Find the "convective acceleration" for this flow, $(\mathbf{u} \cdot \nabla) \mathbf{u}$. Are there points where the convective acceleration is zero? Make sure your answer agrees with your picture in part "b"

