Math 613 * Fall 2018 * Victor Matveev * Homework 4

1. Consider the SIR (susceptible-infected-recovered) epidemiology model with immunity extinction rate k_E (note that in this case the transition chain forms a loop):

$$S \xrightarrow{I \cdot k_I} I \xrightarrow{k_R} R \xrightarrow{k_E} S$$

- a) Using the conservation law (S(t) + I(t) + R(t) = const = N), eliminate the variable R(t)
- b) Non-dimensionalize the system of 2 ODEs, using time scale $[t] = 1 / k_I$. Denote $\rho_R = k_R / k_I$; $\rho_E = k_E / k_I$
- c) Sketch the nullclines and the flow field in the phase plane $(s = S^*, i = I^*)$. Assume $\rho_E \ll 1$; $\rho_R = O(1) \ll N$.
- d) Find all equilibria and analyze their linear stability
- 2. Finish the problem we started in class concerning the bimolecular reaction $C + B \xrightarrow{k^-} A$
 - a) Write down the single differential equation for dA/dt that you obtain by eliminating C(t) and B(t) using conservation laws, for initial conditions $C(0)=C_0$, $B(0)=B_0$ and A(0)=0
 - b) Non-dimensionalize this equation using time scale $[t] = 1 / k^{-1}$ and concentration scale $[A] = K_D = k^{-1} / k^{-1}$
 - c) Find the equilibrium and analyze its stability, both graphically and using linear stability analysis
- 3. Examine the chemical reactor for *B* production considered in class:

$$\left\{ A + A \xrightarrow{k^+} B; \quad \varnothing \xrightarrow{k_A} A; \quad B \xrightarrow{k_B} \varnothing \right\}$$

- a) Non-dimensionalize this system using time scale $[t] = 1 / k^-$ and concentration scale $[A] = [B] = k^- / k^+$.
- b) Find the equilibrium, and analyze the linear stability of the equilibrium. You **don't** have to examine whether the equilibrium is a spiral or a node.
- c) For the special case $k_B = k^-$, sketch the nullclines in the phase plane (a=A*, b=B*), and show the trajectory for the initial condition A(0)=B(0)=0
- 4. Consider the function $f(x) = \int_{0}^{\infty} \frac{e^{-t}dt}{1 xt}$
 - a) Obtain the asymptotic expansion of this function for x \rightarrow 0 using the familiar geometric series / Taylor series identity $\frac{1}{1-z} = \sum_{k=0}^{N} z^k + \frac{z^{N+1}}{1-z}$, and then taking the integral term-by-term (the last term will give you an integral

representation of the remainder). Use the familiar gamma function identity $\int_{0}^{\infty} t^{k} e^{-t} dt = \Gamma(k+1) = k!$

b) Take a value of x=0.002, and plot the dependence of the partial sum of the asymptotic series, $S_N(x)$, on N. What do you think would be the best estimate for f(0.002)?