- 1. Consider the function $f(x) = \int_{0}^{\infty} \frac{e^{-t}dt}{1-xt}$
 - a) Obtain the asymptotic expansion of this function for $x \to 0$ using the familiar geometric series / Taylor series identity $\frac{1}{1-z} = \sum_{k=0}^{N} z^k + \frac{z^{N+1}}{1-z}$, and then taking the integral term-by-term (the last term will give you

an integral representation of the remainder). Use the gamma function identity $\int_{0}^{\infty} t^{k} e^{-t} dt = \Gamma(k+1) = k!$

- b) Take a value of x=0.1, and plot the dependence of the partial sum of the asymptotic series, $S_N(x)$, on N, for N from 1 to 22. What do you think would be the best estimate for f(0.1)?
- **2.** Obtain asymptotic series representation of the solution to the following ODE, up to second order in ε :

$$\begin{cases} \frac{d^2 y}{dt^2} = \frac{1}{1 + \varepsilon y} \\ y(0) = 0; \quad \frac{dy}{dt}(0) = 1 \end{cases}$$

Hint: expand the right-hand side in the Taylor series up to second order in ε , and consider solutions in the form $y(t) = y_o(t) + \varepsilon y_1(t) + \varepsilon^2 y_2(t) + O(\varepsilon^3)$, with the following initial conditions:

$$\begin{cases} y_0(0) = 0 \\ \frac{dy_o}{dt}(0) = 1 \end{cases} \begin{cases} y_1(0) = 0 \\ \frac{dy_1}{dt}(0) = 0 \end{cases} \begin{cases} y_2(0) = 0 \\ \frac{dy_2}{dt}(0) = 0 \end{cases}$$

3. Show by direct differentiation that $\rho(x,t) = \frac{1}{\sqrt{4\pi kt}} \exp\left(-\frac{x^2}{4kt}\right)$ satisfies the partial differential equation of diffusion on an infinite domain: $\rho_t(x,t) = k\rho_{xx}(x,t)$

Fourth problem on the other side of the page

4. Consider a substance of linear density $\rho(x,t)$ diffusing in a tube of length *L*, with a sealed left end, and

with extra molecules injected according to the source function $Q(x) = \alpha \sin\left(\frac{\pi x}{L}\right)$ ($\alpha = const$):

$$\begin{cases} \frac{\partial \rho}{\partial t} = k \frac{\partial^2 \rho}{\partial x^2} + \alpha \sin\left(\frac{\pi x}{L}\right) & (0 < x < L, t > 0) \\ \frac{\partial \rho}{\partial x}(0, t) = 0 \\ \frac{\partial \rho}{\partial x}(L, t) = \beta = const \\ \rho(x, 0) = \gamma = const \end{cases}$$

You can non-dimensionalize this equation if you wish.

- a) Explain in one sentence what the boundary condition $\frac{\partial \rho}{\partial x}(L, t) = \beta$ describes, physically, for different signs of constant β . Hint: recall the relationship between the flux and the density: $\phi(x,t) = -k\rho_x(x,t)$
- b) Integrate both sides of this equation from 0 to *L* to obtain an ordinary differential equation (conservation law) describing the time evolution of $N(t) = \int_{0}^{L} \rho(x,t) dx$, which is the total number of molecules (or total mass, charge, energy, probability, etc.). Solve this equation to find N(t)
- c) Use your results to part "b" to answer the following question: does the equilibrium exist for **any** value of constant β ? Why or why not?
- d) Find the density function at equilibrium