
Math 613 * Fall 2018 * Victor Matveev * Homework 5 

1. Consider the function  
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a) Obtain the asymptotic expansion of this function for x  0 using the familiar geometric series / Taylor 

series identity 
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  , and then taking the integral term-by-term (the last term will give you 

an integral representation of the remainder). Use the gamma function identity  
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b) Take a value of x=0.1, and plot the dependence of the partial sum of the asymptotic series, SN(x), on N, 

for N from 1 to 22. What do you think would be the best estimate for  f 0.1 ? 

 
2. Obtain asymptotic series representation of the solution to the following ODE, up to second order in :  
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Hint: expand the right-hand side in the Taylor series up to second order in , and consider solutions in the 

form          2 3
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 

 

 

 

 

 

0 1 2

1 2

0 0 0 0 0 0

0 0 0 00 1o

y y y

dy dy dy

dt dtdt

    
  
  

    

 

 

3. Show by direct differentiation that  
21

, exp
44




 
  

 

x
x t

ktkt
 satisfies the partial differential equation of 

diffusion on an infinite domain:    , , t xxx t k x t  

 

 

Fourth problem on the other side of the page  



4. Consider a substance of linear density  , x t  diffusing in a tube of length L, with a sealed left end, and 

with extra molecules injected according to the source function   sin
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You can non-dimensionalize this equation if you wish. 
 

a) Explain in one sentence what the boundary condition  ,L t
x
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signs of constant . Hint: recall the relationship between the flux and the density:    , ,   xx t k x t  

b) Integrate both sides of this equation from 0 to L to obtain an ordinary differential equation (conservation 

law) describing the time evolution of    
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N t x t dx , which is the total number of molecules (or total 

mass, charge, energy, probability, etc.). Solve this equation to find  N t  

c) Use your results to part “b” to answer the following question: does the equilibrium exist for any value of 
constant  ? Why or why not? 

d) Find the density function at equilibrium 

 


