Math 613 * Fall 2018 * Victor Matveev * Homework 5

1. Consider the function $f(x)=\int_{0}^{\infty} \frac{e^{-t} d t}{1-x t}$
a) Obtain the asymptotic expansion of this function for $x \rightarrow 0$ using the familiar geometric series / Taylor series identity $\frac{1}{1-z}=\sum_{k=0}^{N} z^{k}+\frac{z^{N+1}}{1-z}$, and then taking the integral term-by-term (the last term will give you an integral representation of the remainder). Use the gamma function identity $\int_{0}^{\infty} t^{k} e^{-t} d t=\Gamma(k+1)=k$!
b) Take a value of $\mathrm{x}=\mathbf{0 . 1}$, and plot the dependence of the partial sum of the asymptotic series, $S_{N}(\mathrm{x})$, on N, for N from 1 to 22. What do you think would be the best estimate for $f(\mathbf{0 . 1})$?
2. Obtain asymptotic series representation of the solution to the following ODE, up to second order in ε :

$$
\left\{\begin{array}{l}
\frac{d^{2} y}{d t^{2}}=\frac{1}{1+\varepsilon y} \\
y(0)=0 ; \quad \frac{d y}{d t}(0)=1
\end{array}\right.
$$

Hint: expand the right-hand side in the Taylor series up to second order in ε, and consider solutions in the form $y(t)=y_{o}(t)+\varepsilon y_{1}(t)+\varepsilon^{2} y_{2}(t)+O\left(\varepsilon^{3}\right)$, with the following initial conditions:

$$
\left\{\begin{array} { l }
{ y _ { 0 } (0) = 0 } \\
{ \frac { d y _ { o } } { d t } (0) = 1 }
\end{array} \quad \left\{\begin{array} { l }
{ y _ { 1 } (0) = 0 } \\
{ \frac { d y _ { 1 } } { d t } (0) = 0 }
\end{array} \quad \left\{\begin{array}{l}
y_{2}(0)=0 \\
\frac{d y_{2}}{d t}(0)=0
\end{array}\right.\right.\right.
$$

3. Show by direct differentiation that $\rho(x, t)=\frac{1}{\sqrt{4 \pi k t}} \exp \left(-\frac{x^{2}}{4 k t}\right)$ satisfies the partial differential equation of diffusion on an infinite domain: $\rho_{t}(x, t)=k \rho_{x x}(x, t)$

Fourth problem on the other side of the page

4. Consider a substance of linear density $\rho(x, t)$ diffusing in a tube of length L, with a sealed left end, and with extra molecules injected according to the source function $Q(x)=\alpha \sin \left(\frac{\pi x}{L}\right)(\alpha=$ const $)$:

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}=k \frac{\partial^{2} \rho}{\partial x^{2}}+\alpha \sin \left(\frac{\pi x}{L}\right) \quad(0<x<L, t>0) \\
\frac{\partial \rho}{\partial x}(0, t)=0 \\
\frac{\partial \rho}{\partial x}(L, t)=\beta=\text { const } \\
\rho(x, 0)=\gamma=\text { const }
\end{array}\right.
$$

You can non-dimensionalize this equation if you wish.
a) Explain in one sentence what the boundary condition $\frac{\partial \rho}{\partial x}(L, t)=\beta$ describes, physically, for different signs of constant β. Hint: recall the relationship between the flux and the density: $\phi(x, t)=-k \rho_{x}(x, t)$
b) Integrate both sides of this equation from 0 to L to obtain an ordinary differential equation (conservation law) describing the time evolution of $N(t)=\int_{0}^{L} \rho(x, t) d x$, which is the total number of molecules (or total mass, charge, energy, probability, etc.). Solve this equation to find $N(t)$
c) Use your results to part "b" to answer the following question: does the equilibrium exist for any value of constant β ? Why or why not?
d) Find the density function at equilibrium

