Math 613 * Fall 2018 * Victor Matveev * Homework 6

1. Derive the diffusion equation in a one-dimensional tube/cable for the case where the tube cross-section varies along the length, $A(x)$ (you don't have to consider the source term). Bonus question: does the resulting equation remind you of anything from Calculus III, in the special case $A(x)=$ const $\cdot x$ or $A(x)=$ const $\cdot x^{2}$?
Hint: the Fick's law of diffusion $q=-k \frac{\partial \rho}{\partial x}$ still has the same form in this case; you only have to modify the conservation law derivation, and then combine the two equations. As a reminder, below is the integral derivation of the conservation law, in the case of constant cross-section and zero sources:

$$
\begin{aligned}
& N_{a b}(t) \equiv \iiint_{V} \rho(\mathbf{r}, t) \underbrace{d V}_{A d x}=A \int_{a}^{b} \rho(x, t) d x \\
& \begin{aligned}
& \Rightarrow \frac{d N_{a b}(t)}{d t}=A \frac{d}{d t} \int_{a}^{b} \rho(x, t) d x=A \int_{a}^{b} \frac{\partial \rho(x, t)}{\partial t} d x=(\text { inflow rate })-(\text { outflow rate }) \\
&=A q(a)-A q(b)=-A \int_{a}^{b} \frac{\partial q}{\partial x} d x
\end{aligned} \\
& \Rightarrow A \int_{a}^{b}\left(\frac{\partial q}{\partial t}+\frac{\partial q}{\partial x}\right) d x=0 \Rightarrow \frac{\partial \rho}{\partial t}+\frac{\partial q}{\partial x}=0 \quad \text { (since the interval of integration is arbitrary) }
\end{aligned}
$$

2. Solve the following wave / advection equation using the method of characteristics. Make two plots: plot the characteristics, and plot the solution at $t=10$ (note: units are non-dimensional)

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\frac{\sqrt{x}}{1+t} \frac{\partial \rho}{\partial x}=0 \quad(t>0) \\
\rho(x, 0)=\rho_{o}(x)=4 x \quad(0<x<+\infty)
\end{array}\right.
$$

3. Consider the traffic flow problem discussed in class, but with no speed limit, and a different dependence of velocity on density: $u(\rho)=\alpha \ln \frac{\rho_{\max }}{\rho}$ (assume constants $\alpha, \rho_{\max }, \beta, \gamma$ are positive and real):

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u(\rho))=0 \quad(-\infty<x<+\infty, t>0) \\
\rho(x, 0) \equiv \rho_{o}(x)=\beta \exp (-\gamma x)
\end{array}\right.
$$

a) Non-dimensionalize this problem
b) Use the chain rule to convert the problem to the standard advection form $\left.\frac{d \rho}{d t}\right|_{\Phi}=\frac{\partial \rho}{\partial t}+\left.\frac{d x}{d t}\right|_{\Phi} \frac{\partial \rho}{\partial x}=0$
c) Find the characteristic curves and plot them (consider non-dimensional position in the range $-1<x^{*}<1$)
d) Find and plot the solution at $t=0$ and at some future time $t>0$
e) Repeat steps (c-d) for a different initial condition: $\beta \exp (+\gamma x)(\beta, \gamma=$ const $>0)$. Choose initial nondimensional position on the interval $-1<x^{*}(0)<1$. Do you notice anything funny about the characteristic curves at large time values? Explain.

