
Math 613 * Fall 2018 * Victor Matveev * Homework 6 

1. Derive the diffusion equation in a one-dimensional tube/cable for the case where the tube cross-section 
varies along the length, A(x) (you don’t have to consider the source term). Bonus question: does the resulting 
equation remind you of anything from Calculus III, in the special case A(x) = constx or A(x) = constx2 ? 

Hint: the Fick’s law of diffusion
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 still has the same form in this case; you only have to modify the 

conservation law derivation, and then combine the two equations. As a reminder, below is the integral 
derivation of the conservation law, in the case of constant cross-section and zero sources: 
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2. Solve the following wave / advection equation using the method of characteristics. Make two plots: plot the 
characteristics, and plot the solution at t=10 (note: units are non-dimensional)  

 

     

0 0
1

,0 4 0

 

 

 
  

  
      o

x
t

t t x
x x x x

 

3. Consider the traffic flow problem discussed in class, but with no speed limit, and a different dependence of 

velocity on density:    maxln


 


u  (assume constants max, ,    are positive and real): 
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a) Non-dimensionalize this problem 

b) Use the chain rule to convert the problem to the standard advection form 0
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c) Find the characteristic curves and plot them (consider non-dimensional position in the range -1 < x* <1) 

d) Find and plot the solution at t = 0 and at some future time t > 0 

e) Repeat steps (c-d) for a different initial condition:    ,exp 0     constx . Choose initial non-

dimensional position on the interval -1 < x*(0) < 1. Do you notice anything funny about the characteristic 
curves at large time values? Explain. 


