Math 613 * Fall 2018 * Victor Matveev * Homework 7

Boldface quantities are constant vectors or vector fields; italic quantities are scalars

1. Combine the divergence theorem with the Gauss law $\nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{\rho(\mathbf{r})}{\varepsilon_0}$ to find the electric field strength

 $\mathbf{E}(\mathbf{r})$ inside a uniformly charged ball of radius r_0 with total charge Q.

Hints:

- a) Start by calculating the density ρ for a total charge Q uniformly distributed over a ball of radius r_{o}
- b) Assume that the electric field is oriented along radial lines, and that its magnitude depends only on the distance from the origin: $\mathbf{E}(\mathbf{r}) = E(r)\hat{\mathbf{r}}$, where $E = |\mathbf{E}|$, $r = |\mathbf{r}|$, $\hat{\mathbf{r}} = \frac{\mathbf{r}}{|\mathbf{r}|}$
- c) Apply the Divergence Theorem to the Gauss law, integrating over a ball with a radius *smaller* than the radius r_0
- 2. Combine the divergence theorem with the Gauss law $\nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{\rho(\mathbf{r})}{\varepsilon_0}$ to find the electric field strength

 $\mathbf{E}(\mathbf{r})$ outside an infinitely long cable of radius r_0 with uniform charge density ρ

Hints:

- a) Assume that the electric field is oriented away from the cable axis lines, and that its magnitude depends only on the distance from this axis: $\mathbf{E}(\mathbf{r}) = E(r)\hat{\mathbf{r}}$, where $E = |\mathbf{E}|$, $\hat{\mathbf{r}}$ is a unit vector pointing away from the axis of the cable.
- d) Apply the Divergence Theorem to $\mathbf{E}(\mathbf{r})$, using a cylindrical surface with a radius larger than the radius r_{\circ}

Next problem will be carried over to homework #8:

- 3. Re-write the following expressions using suffix notation (do not simplify):
 - a) trace(AB) b) $\nabla \cdot (\mathbf{u}(\mathbf{r}) \times \mathbf{v}(\mathbf{r}))$ c) det(A) (hint: see your answer to part "b")