Math 613 * Fall 2018 * Victor Matveev * Homework 8

1. Re-write the following expressions using index (Einstein) notation (do not simplify):
a) $\operatorname{trace}(A B)$
b) $\quad \operatorname{det}(A)$
2. Use index notation to derive the product rules for the following expressions, converting the results back to vector form:
a) $\nabla \cdot\left(\frac{\mathbf{U}}{\phi}\right)$
b) $\nabla(\mathbf{U} \cdot \mathbf{V})$
c) $\nabla \cdot(\mathbf{U} \times \mathbf{V})$
3. Use the identity $\varepsilon_{i j k} \varepsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l}$ to expand and simplify the expression $\nabla \times(\nabla \times \mathbf{U})$. Make sure to convert the final expression back to vector form.
4. Find the electric potential φ both inside and outside a uniformly charged sphere of radius r_{0} and total charge of Q, by directly solving the corresponding Poisson-Laplace equations; plot the electric potential as a function of distance from the origin:

$$
\left\{\begin{array}{l}
\nabla^{2} \phi_{\text {in }}=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi_{\text {in }}}{d r}\right)=\frac{\rho}{\varepsilon_{0}} \quad\left(r<r_{0}\right) \\
\nabla^{2} \phi_{\text {out }}=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi_{\text {out }}}{d r}\right)=0 \quad\left(r>r_{0}\right) \\
\phi_{\text {in }}(0) \text { bounded; } ; \phi_{\text {out }}(r \rightarrow \infty) \rightarrow 0 \\
\phi_{\text {in }}\left(r_{0}\right)=\phi_{\text {out }}\left(r_{0}\right) ; \quad \phi_{\text {in }}{ }^{\prime}\left(r_{0}\right)=\phi_{\text {out }}{ }^{\prime}\left(r_{0}\right)
\end{array}\right.
$$

Finally, to compare your results to the results of homework 7, find and plot the electric field strength both inside and outside of the sphere using the definition of electric potential: $E=|\mathbf{E}|=\left|\frac{d \phi}{d r}\right|$

Some index/suffix/Einstein/tensor notation basics:

$$
\begin{array}{ll}
\mathbf{u}=A \mathbf{v}: & u_{i}=A_{i j} v_{j} \\
\mathbf{u}=\mathrm{I} \mathbf{u}: & u_{i}=\delta_{i j} u_{j} \\
\mathbf{a}=\mathbf{b} \times \mathbf{c}: & a_{i}=\varepsilon_{i j k} b_{j} c_{k} \\
A=B C: & A_{i j}=B_{i k} C_{k j}
\end{array}
$$

$\operatorname{grad} \phi=\nabla \phi: \quad \partial_{i} \phi$
$\operatorname{div} \mathbf{U}=\nabla \cdot \mathbf{U}: \quad \partial_{k} U_{k}$
$\operatorname{curl} \mathbf{U}=\nabla \times \mathbf{U}: \quad \varepsilon_{i j k} \partial_{j} U_{k}$
$\varepsilon_{i j k}=\varepsilon_{j k i}=\varepsilon_{k i j}=-\varepsilon_{j i k}=-\varepsilon_{i k j}=-\varepsilon_{k j i}$
$\delta_{i j}=\delta_{j i}$

