Math 111 EXAM II, April 9, 2003

Read each problem carefully. Show all your work for each problem! No Calculators!

1. (20) Find d^2y/dx^2 for the following:

(a)
$$y = x^2 + \frac{1}{x^2}$$
, (b) $y = \tan(x)$, (c) $y = \cos(\sin(x))$, (d) $y = 2\sin(y - x) + x$.

- 2. (a) (10) Find two positive real numbers, x and y, such that their product is 25 and their sum is as small as possible. Verify this value is a minimum.
 - (b) (10) Find an approximation to the root of the function $f(x) = x^3 + 3x + 1$ using Newton's Method. Use $x_0 = 0$ and calculate the first iteration, x_1 .
- 3. (a) (10) Find the linear approximation of the function $f(x) = x^2$ near the point a = 0, and then near the point a = -1.
 - (b) (5) Show that the function $f(x) = x^3$ satisfies the hypotheses of the mean value theorem on the interval $x \in [-1, 1]$. Find all numbers, c, in this interval that satisfy the conclusion of that theorem.
- 4. (a) (5) Find all horizontal, vertical and slant asymptotes for the function

$$y = \frac{x^2}{x - 1}.$$

- (b) (10) Each side of an equilateral triangle is decreasing at a rate of 2 in/s. At what rate is the area decreasing when the area is $\sqrt{3}$ in².
- 5. (15) For the function below, find all of the following if they exist: (i) all local extrema, (ii) points of inflection, (iii) intervals where the function is increasing or decreasing, (iv) intervals of upward and downward concavity, and (v) all asymptotes. Also, sketch a plot of the curve y = f(x).

$$f(x) = 1 + \frac{1}{x} - \frac{1}{x^2}.$$

6. (a) (5) Evaluate the indefinite integral

$$\int x(x+1)\,dx.$$

(b) (10) The acceleration, a(t), and initial velocity, v(0), of a particle for the time interval $t \in [0, 4]$ are given by

$$a(t)=rac{1}{\sqrt{t}}-\sqrt{t}; \quad v(0)=2.$$

What are the particle's maximum and minimum velocities on this interval?