Math 331, FINAL EXAMINATION, Fall 2006 Wednesday, December 20, 11:30 AM - 2:00 PM

Problem #1: The effect of periodic surface heating on the interior temperature of the earth may be modeled by

$$u_t = \kappa u_{xx}; \quad 0 < x < \infty$$
$$u(x, 0) = 0; \quad 0 < x < \infty$$
$$u(0, t) = \cos t; \quad t > 0$$

Solve for u(x,t) using an appropriate transform. Leave your answer in the form of an inverse transform integral.

Problem #2: Use an appropriate transform to solve

$$u_{xx} + u_{yy} = 0;$$
 $0 < x < L, \ 0 < y < \infty$

subject to the following boundary conditions

$$u(0, y) = f(y);$$
 $0 < y < \infty$
 $u_y(x, 0) = 0;$ $0 < x < L$
 $u(L, y) = 0;$ $0 < y < \infty$

Leave your answer in the form of an inverse transform integral.

Problem #3: Consider the following Sturm-Liouville Boundary Value Problem:

$$\frac{d}{dx}(x\phi') + \frac{\lambda}{x}\phi = 0 ; \quad x \in (1,2)$$

$$\phi(1) = 0$$

$$\phi(2) = 0$$

- 1. Prove that the eigenvalues are real and that they satisfy $\lambda > 0$.
- 2. Prove that eigenfunctions belonging to different eigenvalues form an orthogonal set of functions over a) what interval? and b) with respect to what weighting function?
- 3. Find the *all* the eigenvalues λ_n and the corresponding eigenfunctions $\phi_n(x)$.
- 4. Evaluate $\int_1^2 \phi_n^2(x) \sigma(x) dx$ (the normalization constant). The integral can be evaluated by the substitution $s = \pi \frac{\ln x}{\ln 2}$.

Problem #4: Consider Laplace's equation

$$\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial u}{\partial r}) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

in the region 1 < r < 2, $0 < \theta < \pi$, subject to the boundary conditions

$$u(r, 0) = 0,$$
 $u(r, \pi) = 1;$ $1 < r < 2$
 $u(1, \theta) = 0,$ $u(2, \theta) = 0;$ $0 < \theta < \pi$

Apply the method of separation of variables, and the results from problem #3 to find $u(r, \theta)$. At some point, the substitution $r = e^s$ may come in handy.

Useful formulas and Fourier/Sine/Cosine transforms

Generalities on Sturm-Liouville Boundary Value Problems

$$(p(x)\phi'(x))' + q(x)\phi + \lambda\sigma(x)\phi(x) = 0; x \in (a, b)$$

$$\alpha_1\phi(a) + \alpha_2\phi'(a) = 0; B.C. at x = a$$

$$\alpha_3\phi(b) + \alpha_4\phi'(b) = 0; B.C. at x = b,$$
(1)

where α_1 , α_2 , α_3 , α_4 are real constants. When (1) is recast in the form $\mathcal{L}\phi = \lambda\sigma(x)\phi$, we have Green's second and first formulas for the operator \mathcal{L} over [a,b] as follows:

$$\int_{a}^{b} ((\mathcal{L}f)g - f(\mathcal{L}g))dx = -[p(x)(f'(x)g(x) - f(x)g'(x))]_{x=a}^{x=b},$$

$$\int_{a}^{b} (\mathcal{L}f)gdx = \int_{a}^{b} p(x)f'(x)g'(x)dx - \int_{a}^{b} q(x)f(x)g(x)dx - [p(x)f'(x)g(x)]_{x=a}^{x=b}.$$

where f(x) and g(x) are two functions with at least 2 derivatives.