Math 630-102 Homework 3 Due date: February 8, 2007

Group work on h/w assignments is not allowed. No credit is given for results without a solution or an explanation. Late homework is not accepted.

Section 1.6

Problem 6. Use Gauss-Jordan method to invert A_1 , A_2 , A_3 .

Note: For each of the three matrices, use your intermediate step $[U | L^{-1}]$ to check that $U = L^{-1}A$ (see note below if in doubt)

Problem 8. Show that A has no inverse by solving Ax = 0, and by failing to solve...

Section 2.1

Problem 1 b (we did part a in class) Construct a subset of the x-y plane R^2 that is...

There are infinitely many subsets of R² which are closed under multiplication but not under addition/subtraction. Give two examples, different from the one in the back of the book: describe one subset constructed from a single vector, and another example subset that contains two linearly independent vectors among its elements.

Problem 2. Which of the following subsets of R³ are actually subspaces?

Problem 3. Describe the column space and the nullspaces of the matrices (Explain your answers!)

Note that for an $m \times n$ matrix A, the nullspace N(A) is a subset of \mathbb{R}^n , since it is the subset of *solutions* of the system A x=0, and therefore, this space is composed of vectors with one component for each unknown. In contrast, the column space C(A) is a subspace of \mathbb{R}^m – the number of components of its vectors is the number of rows (equations), which is m.

Problem 6. Let P be the plane in 3-space with equation x + 2y + z = 6...

Problem 8. Which of the following descriptions is correct? The solution x of...

Problem 9. Show that a set of nonsingular 2 by 2 matrices is not a vector space...

If you are confused how *matrices* could possibly form a *vector* space, just think of a 2 by 2 matrix as a collection of 4 numbers, so the most general (largest) vector space of

2 by 2 matrices is R⁴. Importantly, both matrix addition/subtraction and scalar multiplication are well defined operations.

Problem 21. Describe the column spaces (lines or planes) of these particular matrices:

Problem 22. For which right-hand sides (find a condition on b_1 , b_2 , b_3) are these systems solvable?

Summary of Gauss-Jordan method:

Gauss-Jordan method is equivalent to the standard Gaussian elimination plus back-substitution applied to the augmented matrix of the system $A A^{-1} = I$, and therefore involves a series of row operations accomplishing these two standard steps:

$$[A\mid I] \to elimination \ (LU \ factorization) \to [U\mid L^{\text{-}1}] \to backsubstitution \to [I\mid A^{\text{-}1}]$$

Without resorting to augmented matrices, these two steps should be understood as two matrix multiplications applied to the original equation $AA^{-1} = I$:

A $A^{-1} = I \rightarrow$ elimitation is equivalent to multiplication from the left by L^{-1} , so $L^{-1}AA^{-1}=UA^{-1}$ (since A=LU); on the right we have $L^{-1}I=L^{-1}$, yielding: $UA^{-1}=L^{-1}\rightarrow$ backsubstitution step is equivalent to multiplying equation on the left by U^{-1} , so $U^{-1}UA^{-1}=IA^{-1}$; on the right: $U^{-1}L^{-1}=(LU)^{-1}=A^{-1}$: $IA^{-1}=A^{-1}$ (final result)

Note that A⁻¹ is the unknown in the first two equations, and emerges as the right-hand side in the last equation

Here I ignored the $U\rightarrow DU$ factorization step, since this step is the most obvious; therefore, in the above equations the pivots of U are not necessarily equal to 1