Math 630-102 Final Exam May 3, 2007

This is a closed-book exam: notes and calculators are *not* allowed. Please explain your solutions to receive full credit. Check your answers.

1. (23) Consider the linear system
$$Ax=b$$
 with $A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 2 & 2 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$

- a) Find the **reduced** row-echelon form R of matrix A.
- b) Find the dimensions of the four fundamental subspaces of A
- c) Find the **general** solution to A x = b.
- d) Does the system A x = b have a solution for **any** *b*?

2. (27) Consider a matrix
$$A = \begin{vmatrix} 1/4 & 1/2 \\ 3/4 & 1/2 \end{vmatrix}$$

- a) Diagonalize the matrix A
- b) Solve the difference equation $u_{k+1} = A u_k$, given $u_0 = (1, 0)$. As $k \rightarrow \infty$, does the solution "blow up" to infinity, decay to zero, or approach a non-zero neutrally stable state?
- c) Solve the differential equation du/dt = Au for the same matrix A and the same initial condition u(0) = (1, 0). As $t \rightarrow \infty$, does the solution "blow up" to infinity, decay to zero, or approach a non-zero neutrally stable state?
- 3. (14) Find the co-factor matrix for $A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$, and use it to calculate det A and A^{-1} . Finally, use the Cramer's rule to solve $Ax = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
- **4.** (18) Consider three data points in the functional dependence b = y(t):

y(-1) = 0, y(0) = 1, y(1) = -3

- a) Write down the over-constrained (and hence unsolvable) system Ax = b, where $x=[C D]^T$ is the vector of unknown coefficients of the linear regression y = C+D t
- b) Find the matrix projecting any vector onto the column space of A
- c) Find the linear regression coefficients C and D. Plot the line and the data points.

- **5.** (10) Choose **one** of the following two questions:
 - a) If AB+AC=D, find the expression for the inverse of A (assume all matrices are square and invertible)
 - b) Analyze the stability of the zero equilibrium of the system {dw/dt = u, du/dt=2u+w}. Is there an initial condition for which the solution decays to zero? Illustrate the dynamics in the phase plane.
- 6. (10) For each property listed below, indicate whether it is satisfied by any projection matrix (A=P) or any rotation matrix (A=Q), or neither. You do not have to construct any example matrices. If you are sure about the correctness of your answer, you don't have to explain.
 - a) $A^2 = A$
 - b) $A^2 = I$
 - c) $A^{-1}=A^{T}$
 - d) A is singular
 - e) $A=A^{T}$
 - f) A is non-diagonalizable
 - g) det A = 0
 - h) det A = 1
 - i) $N(A) = \{ 0 \}$
 - j) $C(A) = \{0\}$