Math 630 - Linear Algebra and Its Applications

Instructor: Prof. X. Sheldon Wang
Mid-Term
(Closed book)

Assigned: 6:00pm, Mar. 9, 2006
Due: 8:00pm, Mar. 9, 2006

Problem 1 (15 points)

Construct a matrix with $(1,0,1)$ and $(1,2,0)$ as a basis for its row space and its column space. What is the rank of such a matrix? Why can't this be a basis for the row space and nullspace?

Problem 2 (15 points)
Find \mathbf{L} and \mathbf{U} for the nonsymmetric matrix:

$$
\mathbf{A}=\left[\begin{array}{llll}
a & r & r & r \\
a & b & s & s \\
a & b & c & t \\
a & b & c & d
\end{array}\right]
$$

Problem 3 (15 points)

Suppose $\mathbf{a}_{1}=[1,1,0]^{T}, \mathbf{a}_{2}=[0,-1,0]^{T}$, and $\mathbf{b}=[2,1,4]^{T}$. Find x_{1} and x_{2} such that $\left\|x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}-\mathbf{b}\right\|$ is minimized.

Problem 4 (15 points)

Under what condition on the columns of \mathbf{A} is $\mathbf{A}^{T} \mathbf{A}$ invertible? Without carrying out the matrix multiplication, find out if $\mathbf{A}^{T} \mathbf{A}$ based on the following matrix \mathbf{A} is invertible. Find bases for the four fundamental subspaces of

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 2 & 0 & 3 \\
0 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

Problem 5 (15 points)

Find an orthonormal basis for the plane $x-y+z=0$, and find the matrix \mathbf{P} which projects onto the plane. What is the nullspace of \mathbf{P} ?

Problem 6 (15 points)

Let $\mathbf{A}=\left[\begin{array}{lll}3 & 1 & -1\end{array}\right]$ and let V be the nullspace of \mathbf{A}. (a) Find a basis for V and a basis for V^{\perp}. (b) Write down an orthonormal basis for V^{\perp}, and find the projection matrix \mathbf{P}_{1} which projects vectors in \mathcal{R}^{3} onto V^{\perp}. (c) Find the projection matrix \mathbf{P}_{2} which projects vectors in \mathcal{R}^{3} onto V.

Problem 7 (10 points)

Show that the modified Gram-Schmidt steps

$$
\mathbf{c}^{\prime \prime}=\mathbf{c}-\left(\mathbf{q}_{1}^{T} \mathbf{c}\right) \mathbf{q}_{1} \text { and } \mathbf{c}^{\prime}=\mathbf{c}^{\prime \prime}-\left(\mathbf{q}_{2}^{T} \mathbf{c}^{\prime \prime}\right) \mathbf{q}_{2}
$$

produce the same vector \mathbf{c}^{\prime} as the original Gram-Schmidt steps. The modified steps are much more stable with respect to round-off errors, to subtract off the projections one at a time.

