Math 630 - Linear Algebra and Its Applications

Instructor: Prof. X. Sheldon Wang

Quiz 1

(Closed book)

Assigned:	8:00pm,	Feb.	3,	2005
Due:	9:00pm,	Feb.	3,	2005

Problem 1 (25 points)

Which values of a, b, c lead to row exchanges, and which make the matrices singular?

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ a & 8 & 3 \\ 0 & b & 5 \end{bmatrix} \text{ and } \mathbf{A} = \begin{bmatrix} c & 2 \\ 6 & 4 \end{bmatrix}.$$

Problem 2 (25 points)

Find the symmetric factorization $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{T}$ of $\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 6 & 4 \\ 0 & 4 & 11 \end{bmatrix}$ and $\mathbf{A} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$.

Problem 3 (25 points)

Using Gauss-Jordan method to computer

1	0	0	-1		[1	0	0	$ ^{-1}$
l	1	0		and	l	1	0	
m	0	1			$\lfloor m$	n	1	

Problem 4 (25 points)

Solve Ax = b by solving the triangular systems Lc = b and Ux = c:

$$\mathbf{A} = \mathbf{L}\mathbf{U} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

What part of \mathbf{A}^{-1} have you found, with this particular **b**?