Math 630 - Linear Algebra and Its Applications

Instructor: Prof. X. Sheldon Wang
Quiz 1
(Closed book)

Assigned: 8:00pm, Feb. 3, 2005
Due: 9:00pm, Feb. 3, 2005

Problem 1 (25 points)

Which values of a, b, c lead to row exchanges, and which make the matrices singular?

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 0 \\
a & 8 & 3 \\
0 & b & 5
\end{array}\right] \text { and } \mathbf{A}=\left[\begin{array}{ll}
c & 2 \\
6 & 4
\end{array}\right]
$$

Problem 2 (25 points)

Find the symmetric factorization $\mathbf{A}=\mathbf{L D L}^{T}$ of

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 6 & 4 \\
0 & 4 & 11
\end{array}\right] \text { and } \mathbf{A}=\left[\begin{array}{cc}
a & b \\
b & c
\end{array}\right]
$$

Problem 3 (25 points)
Using Gauss-Jordan method to computer

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
l & 1 & 0 \\
m & 0 & 1
\end{array}\right]^{-1} \text { and }\left[\begin{array}{ccc}
1 & 0 & 0 \\
l & 1 & 0 \\
m & n & 1
\end{array}\right]^{-1}
$$

Problem 4 (25 points)

Solve $\mathbf{A x}=\mathbf{b}$ by solving the triangular systems $\mathbf{L c}=\mathbf{b}$ and $\mathbf{U x}=\mathbf{c}$:

$$
\mathbf{A}=\mathbf{L} \mathbf{U}=\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 2 & 4 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

What part of \mathbf{A}^{-1} have you found, with this particular \mathbf{b} ?

