Math 630 - Linear Algebra and Its Applications

Instructor: Prof. X. Sheldon Wang
Quiz 2
(Closed book)
Assigned: 8:00pm, Feb. 17, 2005
Due: 9:00pm, Feb. 17, 2005

Problem 1 (25 points)

Show that the set of nonsingular 2×2 matrices is not a vector space. Show also that the set of singular 2×2 matrices is not a vector space.

Problem 2 (25 points)

Describe the set of attainable right sides \mathbf{b} for

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right],
$$

by finding the constraints on \mathbf{b} that turn the third equation into $0=0$ (after elimination). What is the rank? How many free variables, and how many solutions?

Problem 3 (25 points)

What is the echelon form \mathbf{U} of

$$
\mathbf{A}=\left[\begin{array}{ccccc}
1 & 2 & 0 & 2 & 1 \\
-1 & -2 & 1 & 1 & 0 \\
1 & 2 & -3 & -7 & -2
\end{array}\right] ?
$$

What are the dimensions of its four fundamental subspaces?

Problem 4 (25 points)

(a) Find the rank of \mathbf{A}, and give a basis for its nullspace.

$$
\mathbf{A}=\mathbf{L} \mathbf{U}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
3 & 2 & 4 & 1
\end{array}\right]\left[\begin{array}{llllll}
1 & 2 & 0 & 1 & 2 & 1 \\
0 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(b) True or False. The first 3 rows of \mathbf{U} are a basis for the row space of \mathbf{A}. True or False. Columns 1, 3, 6 of \mathbf{U} are a basis for the column space of \mathbf{A}. True or False. The four rows of \mathbf{U} are a basis for the row space of \mathbf{A}.
(c) Find as many linearly independent vectors \mathbf{b} as possible for which $\mathbf{A x}=\mathbf{b}$ has a solution.
(d) In elimination on \mathbf{A}, what multiple of the third row is subtracted to knock out the fourth row?

