Math 630 - Linear Algebra and Its Applications

Instructor: Prof. X. Sheldon Wang
Quiz 5
(Closed book)

Assigned: 8:00pm, April 14th, 2005
Due: 9:00pm, April 14th, 2005

Problem 1 (25 points)

Find the eigenvalues and eigenvectors of the matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right]
$$

Verify that the trace equals the sum of the eigenvalues, and the determinant equals their product. Suppose we shift the preceding matrix A by subtracting 7I:

$$
\mathbf{B}=\mathbf{A}-7 \mathbf{I}=\left[\begin{array}{cc}
-6 & -1 \\
2 & -3
\end{array}\right]
$$

What are the eigenvalues and eigenvectors of \mathbf{B}, and how are they related to those of \mathbf{A}.

Problem 2 (25 points)

Factor the following matrix into $\mathbf{S} \boldsymbol{\Lambda} \mathbf{S}^{-1}$:

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]
$$

Find the matrix \mathbf{B} whose eigenvalues are 1 and 4 , and the corresponding eigenvectors are $\left(\begin{array}{ll}3 & 1\end{array}\right)^{T}$ and $\left(\begin{array}{ll}2 & 1\end{array}\right)^{T}$, respectively.

Problem 3 (25 points)

If each number is the average of the two pervious numbers, $G_{k+2}=\left(G_{k+1}+\right.$ $\left.G_{k}\right) / 2$, set up the matrix A and diagonalize it. Starting from $G_{o}=0$ and $G_{1}=1 / 2$, find the formula for G_{k} and compute its limit as $k \rightarrow \infty$.

Problem 4 (25 points)

Which of these matrices cannot be diagonalized?

$$
\mathbf{A}_{1}=\left[\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right], \quad \mathbf{A}_{2}=\left[\begin{array}{cc}
2 & 0 \\
2 & -2
\end{array}\right], \quad \mathbf{A}_{3}=\left[\begin{array}{ll}
2 & 0 \\
2 & 2
\end{array}\right] .
$$

Diagonalize the 2×2 skew-Hermitian matrix \mathbf{K}, whose entries are all i. Compute $e^{\mathbf{K} t}=\mathbf{S} e^{\boldsymbol{\Lambda}}{ }^{t} \mathbf{S}^{-1}$, and verify that $e^{\mathbf{K} t}$ is unitary. What is its derivative at $t=0$?

