Math 630 - Linear Algebra and Its Applications

Instructor: Prof. X. Sheldon Wang

Quiz 6

(Closed book)

Assigned: 8:00pm, April 28th, 2005
Due: 9:00pm, April 28th, 2005

Problem 1 (25 points)

The quadratic $f=3\left(x_{1}+2 x_{2}\right)^{2}+4 x_{2}^{2}$ is positive. Find its matrix \mathbf{A}, factor it into $\mathbf{L D L}{ }^{T}$, and connect the entries in \mathbf{D} and \mathbf{L} to the original f.

Problem 2 (25 points)

Show from the eigenvalues that if \mathbf{A} is positive definite, so are \mathbf{A}^{2} and \mathbf{A}^{-1}.

Problem 3 (25 points)

Decide whether the following matrices are positive definite, negative definite, semi-definite, or indefinite:

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 4 \\
3 & 4 & 9
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
2 & 6 & -2 & 0 \\
0 & -2 & 5 & -2 \\
0 & 0 & -2 & 3
\end{array}\right], \quad \mathbf{C}=-\mathbf{B}, \quad \mathbf{D}=\mathbf{A}^{-1} .
$$

Is there a real solution to $-x^{2}-5 y^{2}-9 z^{2}-4 x y-6 x z-8 y z=1$?
Problem 4 (25 points)
For the semi-definite matrices

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right](\operatorname{rank} 2) \quad \text { and } \mathbf{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right](\operatorname{rank} 1)
$$

write $\mathbf{x}^{T} \mathbf{A x}$ as a sum of two squares and $\mathbf{x}^{T} \mathbf{B x}$ as one square.

