
Experimental studies have revealed conspicuous short-term facil-
itation and depression that are expressed differentially at distinct
classes of cortical synapses. To explore computational implications
of synaptic dynamics, we investigated transmission of complex spike
trains through a stochastic model of cortical synapse endowed with
short-term facilitation and vesicle depletion. Inputs to the synapse
model were either real spike train data recorded from the visual and
prefrontal cortices of behaving monkeys, or were generated
numerically with prescribed temporal statistics. We tested the
hypothesis that short-term facilitation could enable synapses to filter
out single spikes and favor bursts of action potentials. We found that
the ratio between release probabilities for a burst spike and an
isolated spike grows monotonically with increasing number of spikes
per burst, and with increasing interval between isolated spikes. Burst
detection is optimal when the facilitation time constant matches the
average burst duration. Using fractal-like spike patterns charac-
terized by long-term power-law temporal correlations and similar to
those seen in sensory neurons, we found that facilitation increases
correlation at short time scales. In contrast, depression leads to a
dramatic reduction in temporal correlations at all time scales, and to
a flat (‘whitened’) power spectrum, thereby decorrelating natural
input signals.

Introduction
Transient activity-dependent synaptic plasticity is a prevalent

feature of both vertebrate and invertebrate neural systems,

regulating synaptic efficacy at a variety of time scales, from

milliseconds to minutes (Magleby, 1987; Zucker, 1989, 1996;

Fisher et al., 1997). Recently there has been a resurgence of

interest in this topic, and a growing number of experimental

results on cortical synapses (Stevens and Wang, 1995; Debanne

et al., 1996; Markram and Tsodyks, 1996; Thomson et al., 1996;

Abbott et al., 1997; Buhl et al., 1997; Dobrunz and Stevens,

1997; Castro-Alamancos and Connors, 1997;  Thomson  and

Deuchars, 1997; Varela et al., 1997, 1999; Ali et al., 1998;

Galarreta and Hestrin, 1998; Dittman et al., 2000; Kreitzer and

Regehr, 2000). Theoretical studies have shown that short-term

depression can have dramatic effects on synaptic response to

inputs of changing firing rates (Abbott et al., 1997; Tsodyks and

Markram, 1997), and it was also suggested that depression

may be involved in generation of rhythmic activity in certain

neural systems (Senn et al., 1996; O’Donovan and Chub, 1997;

O’Donovan and Rinzel, 1997). It was also proposed that

short-term plasticity may underlie the selectivity of neurons

for temporal patterns in afferent signals (Buonomano and

Merzenich, 1995; Buonomano, 2000). These results highlighted

the notion that synapses are readily modifiable and play an active

role in the computation carried out by a neural circuit.

Short-term plasticity is differentially expressed at synapses,

in a target-cell-specific manner. For example, intracellular

recordings from neocortical slices revealed that afferents of a

pyramidal cell innervating another pyramidal cell and an

interneuron display frequency-dependent depression and facil-

itation respectively (Thomson, 1997; Markram et  al.,  1998;

Varela et al., 1999). In another study, synaptic responses evoked

by a pyramidal cell in a bitufted interneuron showed facilitation,

while the responses evoked by the same pyramidal cell in a

multipolar interneuron exhibited short-term depression (Reyes

et al., 1998). Target-cell specific short-term plasticity of syn-

apses of pyramidal cells was also observed in the hippocampus

(Ali and Thomson, 1998). All these data raise the questions of

why short-term plasticity should be synapse-specific, and when

facilitation or depression is desirable from a computational point

of view. To address these questions, we need to study the

interplay between presynaptic firing patterns and synaptic

dynamics, for example by using natural spike trains from a

behaving animal as stimulation patterns in studies of synaptic

transmission (Dobrunz and Stevens, 1999). In the same spirit, we

used a computational approach to investigate how a depressing

or  facilitating synapse would process complex spike trains

similar to those occurring in the intact brain.

Although a fair number of modeling studies of short-term

synaptic dynamics can be found in the literature, many of the

existing biophysical models are concerned with a particular

feature of synaptic response (Neher and Zucker, 1993; Tank et

al., 1995; Bertram et al., 1996; Bennett et al., 1997; Dobrunz and

Stevens, 1997; Canepari and Cerubini, 1998; Wu and Betz,

1998), while models used in investigating the functional roles of

short-term plasticity tend to be phenomenological (Tsodyks and

Markram, 1997; Varela et al., 1997, 1999). Furthermore, even the

more detailed studies (Dittman and Regehr, 1998; Dittman et al.,

2000) do not take into account the stochastic nature of synaptic

response, and only consider simple (periodic or Poisson) input

patterns. In the present work, we  investigated a  model  of

synaptic dynamics that incorporates both the stochastic vesicle

recycling process and activity-dependent facilitation. Unlike

most existing models, our model takes into account the

fundamental assumption, believed to hold for central synapses,

that at most one vesicle can be released per action potential

(Redman, 1990; Arancio et al., 1994; Korn et al., 1994; Stevens

and Wang, 1995; Somogyi et al., 1998; Walmsley et al., 1998).

This condition provides an important constraint on response

properties of a cortical synapse. We explored the response of

this model synapse to ‘naturalistic’ inputs similar to neuronal

spike trains recorded in vivo from the cortex, and focused on

two common kinds of complex neuronal firing patterns: spike

trains containing fast bursts as well as isolated spikes, and spike

trains of fractal temporal structure with long-term correlations.

Materials and Methods
Our synapse model is, in essence, a simple model of vesicle turnover

(Fig. 1) (Wang, 1999; Matveev and Wang, 2000). It consists of a single

vesicle pool of size N with an upper limit of N0, which can lose one

vesicle in response to a presynaptic action potential. Depletion of the
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vesicle pool leads to short-term depression, which recovers with a time

constant τD equal to the inverse of the vacancy refill rate. Processes of

vesicle release and recovery are treated stochastically (Vere-Jones, 1966,

Melkonian and Kostopoulos, 1996; Quastel, 1997; Maass and Zador,

1999). Release of a single vesicle during an incoming pulse is governed by

a Poisson process with some time-dependent rate λV(t), which we assume

is significant only for the duration of the pulse. The integral αV = ∫ λV dt is

the fusion rate for a single vesicle integrated over the duration of the

presynaptic pulse. The single-vesicle release probability is then pv = 1 –

exp(–αV), and the single-vesicle failure probability is 1 – pv = exp(–αV)

(Dobrunz and Stevens, 1997). Vesicle recovery is assumed to be governed

by a Poisson process with rate 1/τD. Therefore, the probability for a

vacancy in the vesicle pool to be refilled during a time interval ∆t is given

by prefill = 1 – exp(–∆t/τD).

We impose a constraint that no more than one vesicle can be released

per single action potential, assuming that a vesicle release event

transiently prevents other vesicles from being exocytosed, as suggested

by Triller and Korn (Triller and Korn, 1982). Then, the release probability

per stimulus is one minus the failure probability, given by the Nth power

of single-vesicle release failure probability, where N is the number of

vesicles available for release (Dobrunz and Stevens, 1997, eq. 1.A):

(1)

Therefore, the univesicular release constraint implies a nonlinear

dependence of the release probability on the number of available vesicles.

For a pool of synapses with a similar value of αV, each with a different

number of releasable vesicles N, the initial release probability pr would

increase with N according to equation (1) (see Fig. 5 of Dobrunz and

Stevens, 1997).

We assume that the release site quickly recovers from the putative

inhibition mechanism that prevents multivesicular release. As proposed

by Dobrunz et al. (Dobrunz et al., 1997), such a ‘lateral inhibition’

mechanism may be the basis for the observed brief refractory period

following a postsynaptic response, during which the probability for

another response to happen is small (Stevens and Wang, 1995; Hjelmstad

et al., 1997). Experimentally, one can distinguish between the relative

and the absolute refractory times; for hippocampal synapses in culture,

both values are close to 5 ms at room temperature (Stevens and Wang,

1995; Hjelmstad et al., 1997), and decrease to ∼ 3–4 ms at 31°C (Stevens

and Wang, 1995). For our simulations, we set both time constants to 3 ms.

After a spike the vesicle fusion rate αV is set to zero for the duration of the

absolute refractory time, after which αV recovers exponentially with a

time constant equal to the relative refractory time. Since these time

constants are very short, at physiological firing rates the refractory period

should affect only the synaptic response to fast bursts of action potentials.

Short-term Facilitation

We introduce facilitation into our model by allowing the vesicle fusion

rate to increase with stimulation: αV(t) = αV,0F(t), where F(t) is the

facilitation factor which is incremented with each incoming action

potential according to a deterministic rule; this implies that we neglect

the stochasticity resulting from probabilistic opening of presynaptic

calcium channels (Bertram et al., 1996; Bennett et al., 1997). We assume

that facilitation arises as a result of stimulation-induced increase in the

probability of release, due to a calcium-binding mechanism proposed by

Bertram and colleagues (Bertram et al., 1996). According to this model,

each release  site is controlled  by four independent  calcium  gates,

consistent with the fourth-order cooperativity between presynaptic Ca2+

concentration and synaptic response (Dodge and Rahamimoff, 1967). In

order for exocytosis to take place, each of the gates has to open by

binding a Ca2+ ion. All gates are assumed to have different kinetics, which

is suggested by evidence of stepwise increase in facilitation with

increasing stimulus frequency at the squid giant synapse, accompanied by

a decrease in the Ca2+ co-operativity of release (Stanley, 1986). Multiple

facilitation time scales have also been observed at cortical synapses

(Dobrunz et al., 1997; Thomson, 1997). One of the gates is assumed to

have unbinding kinetics in the sub-millisecond range (Bertram et al.,

1996), so it should not contribute to facilitation (at physiological firing

rates). Facilitation thus involves only three gates. The probability of a gate

of type j remaining open then evolves according to a simple equation

(2)

where Ca2+ inf lux is assumed to be brief, [Ca2+] = ACa Σi δ(t – ti), with ti the

arrival time of the ith stimulus. The parameters kj
+ and kj

– = 1/τFj are

respectively binding and unbinding kinetic coefficients for gate j. Time

constants τFj specify the decay times of the corresponding facilitation

components. For simplicity, we assume that the vesicle release

probability for a given action potential is determined by the states of

release gates at the end of the spike. Let us denote by Oj(tn
+) the jth gating

variable at the end of the nth spike, then the facilitation factor is F(tn) =

F1(tn)F2(tn)F3(tn), where Fj(tn) = Oj(tn
+)/Oj(t1

+), j = 1,2,3. The vesicle fusion

rate αV(tn) = αV,0F(tn), where αV,0 ≡ αV(t1) is the initial vesicle fusion rate.

The facilitation factors are updated as follows, for an arbitrary input

train: (i) at the time of spike arrival, facilitation factors are incremented

according to Fj → 1 + CjFj, where Cj = exp(–ACakj
+) (0 ≤ Cj ≤ 1); (ii)

between spikes each Fj recovers to 1 with time constant τFj (j = 1,2,3).

This update rule is based on the analytic solution of equation (2), linking

values of gating variables for two successive spikes, tn and tn+1 (Bertram et

al., 1996):

(3)

where Oj(t1
+) = 1 – Cj is the value after the first spike. Dividing by Oj(t1

+),

we obtain the update rule for the facilitation factors:

(4)

Note that the parameters Cj (j = 1,2,3) determine the facilitation strengths.

From equation (4) follows that the paired-pulse facilitation (PPF) for very

short interpulse intervals is given by (1 + C1)(1 + C2)(1 + C3); thus, the

maximal paired-pulse facilitation that can be achieved within this model

is PPFmax = 2p, where p = 3 is the number of facilitation gates.

From equation (4) one finds that with constant-frequency stimulation

of rate r, facilitation exponentially approaches a stationary level equal to

(5)

The associated steady-state vesicle fusion rate is αV,ss = αV,0Fss.

Parameters

An important parameter of the synapse model is the number of vesicles in

the release-ready pool, N0. The size of the release-ready pool varies across

different types of central synapses (Zucker, 1996; Neher, 1998); we chose

a range of values corresponding to hippocampal excitatory synapses,

where recordings from individual boutons have been achieved (Bekkers

and Stevens, 1990; Liu and Tsien, 1995; Forti et al., 1997). For the rat

hippocampal synapses in slice and culture, Stevens and collaborators

assessed the size of the releasable pool by measuring the number of

postsynaptic responses elicited by a short, high-frequency electric
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Figure 1. Model of vesicle turnover. Release probability is described by a Poisson
process with lateral inhibition between individual vesicles during exocytosis, and is
given by one minus the failure rate, which is equal to exp(–αVN), where αV = αV,0F is
the fusion rate for a single vesicle, and F is the facilitation factor. Vacancy in the vesicle
pool is refilled with a time constant of τD, which determines the depression recovery
dynamics.
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stimulation (Stevens and Tsujimoto, 1995; Dobrunz and Stevens, 1997),

or by a brief application of a hypertonic solution (Rosenmund and

Stevens, 1996), as well as by optical monitoring of the amount of

f luorescent dye uptaken and released during stimulation (Murthy et al.,

1997; Murthy and Stevens, 1998) [see also (Ryan et al., 1997)]. The

available pool size estimated in individual experiments varied between 2

and 25. Ultrastructural analysis of hippocampal synapses suggests that

these numbers are consistent with the number of vesicles docked at single

synaptic active zones (Forti et al., 1997; Schikorski and Stevens, 1997). In

our simulations we choose N0 = 3–10. For the vesicle refill time constant

we choose a value of τD = 1–2 s, which agrees with the experimentally

determined time of recovery of synaptic response from depression

(Markram and Tsodyks, 1996; Dobrunz and Stevens, 1997; Varela et al.,

1997). Decay time constants for the three facilitation components are τF1

= 35 ms, τF2 = 190 ms and τF3 = 2 s. Quantitatively, the values of τF1 and τF2

were deduced from the interpulse-interval dependence of facilitation

measured at hippocampal synapses by Dobrunz and co-workers

(Dobrunz et al., 1997)  (see  their  Fig. 1). The value of the longer

facilitation time constant τF3 agrees with the facilitation recovery time

at cortical pyramid–interneuron connections studied by Thomson

(Thomson, 1997).

In this form, the model is specified by nine parameters: the maximal

size of the vesicle pool N0, the depression recovery time constant τD, the

initial fusion rate αV,0 [or, equivalently, the initial release probability p0 =

1 – exp(–αV,0N0)], and the facilitation parameters Cj and τFj, j = 1,2,3.

The magnitude of the initial release probability has been shown to

determine the tendency of a given synapse to exhibit facilitation or

depression of response (Debanne et al., 1996; Dobrunz and Stevens,

1997; Tsodyks and Markram, 1997) [reviewed elsewhere (Korn and Faber,

1987; Zucker, 1989)]. Thus, we vary the values of p0 (αV), N0 and Cj to

achieve  regimes  of strong facilitation (low p0, high Cj) and strong

depression (high p0, low N0). In the regime of strong depression,

facilitation cannot play a significant role since vesicle fusion rate αV is

already high; in this case we set Cj = 0 for the sake of simplicity.

Bursty Spike Train

To study the impact of short-term plasticity on synaptic response to

bursts of spikes versus single spikes, we stimulate the model synapse with

a spike train of high burst content. We generate such bursty spike train

numerically, using a two-state pseudo-Markov process described by

Ekholm and Hyvärinen (Ekholm and Hyvärinen, 1970) (Fig. 6A). In this

process, firing alternates between two distinct modes or states: one of the

states corresponds to a burst of spikes (high-frequency firing state), and

the other corresponds to more sparsely spaced spikes between bursts

(low-frequency firing state). This method produces spike sequences that

are compatible with firing patterns observed in rabbit diencephalon and

cat superior colliculus cells in vivo (Ekholm and Hyvärinen, 1970; Mandl

1993).

As  in Ekholm and  Hyvärinen  (1970), the duration  of a burst  is

determined by the number of interspike intervals (ISIs) within a burst,

which obeys a binomial distribution PB(n). The interburst interval is

determined by the number of ISIs between two consecutive bursts,

which is drawn from a geometric distribution PS(n). The binomial dis-

tribution is given by

n = 0, . . ., m, with parameter values pB = 0.5 and m = 8. The geometric

distribution is defined by PS(n + 1) = (1 – pS)pS
n (n = 0, . . ., ∞) with pS =

0.85. Both distributions are shifted by one so that there is at least one ISI

separating two bursts, and at least one ISI within a burst (i.e. at least two

spikes per burst).

Interspike intervals within a burst (ISIB) and between isolated spikes

(ISIS) are drawn from gamma probability densities of  index 2  with

different time constants:

(6)

where τB = 1.2 ms corresponds to ISIs within bursts, and τS = 35 ms

corresponds to ISIs between bursts (average value of ISIS,B is equal to τS,B

multiplied by a factor of 3). This choice of probability densities leads to a

bimodal ISI distribution similar to one seen in in vivo spike trains (Fig.

4B). We impose a lower bound on the minimal ISI by adding a dead time

of 1 ms to all intervals. The average spike rate for these parameter choices

is equal to 16.25 Hz.

To summarize, the spike train is generated by repeating the following

sequence of steps: (i) the number of ISIs in a burst, mB, is chosen

according to probability distribution PB; (ii) burst is formed by generating

mB ISIs according to probability density ρB; (iii) the number of long ISIs

corresponding  to single  spikes  between bursts, mS, is drawn from

probability distribution PS; (iv) mS ISIs are chosen based on distribution

ρS.

Fractal Spike Trains

To study the response of the synapse model to inputs with long-term

temporal autocorrelations, we stimulate the model with numerically

generated fractal spike trains. We generate such spike trains using the

fractal shot-noise driven doubly stochastic Poisson process described by

Lowen and Teich (Lowen and Teich, 1991). According to this process,

probability of a spike occurring at time t is determined by a stochastically

varying firing rate r(t); namely, the probability of a spike occurrence

within time interval [t, t + ∆t] is equal to r(t)∆t. The rate function r(t) is

constructed using another (primary) Poisson process of some constant

rate r0. The event times {ti} of the primary Poisson process are passed

through a linear filter h(t), yielding rate function r(t) of the fractal

process:

(7)

where  amplitudes Ki are in general stochastic quantities. It is the

power-law form of the filter function h(t) that leads to long-term temporal

correlations and the fractal nature of the process. Statistical quantities

such as the autocorrelation function and the Fano factor (see definitions

below) exhibit power-law temporal behavior for time-scales between TA

and TB. Cut-offs TA and TB ensure that the spike rate r(t) remains finite for

any value of β.

We have chosen the following parameter values: β = 0.9, TA = 2 ms,

TB = 100 s, r0 = 0.2 Hz. Filter amplitude Ki is taken to be uniformly

distributed between KA = 6 and KB = 8. To prevent events from occurring

too close to each other, an absolute refractory time of 1.5 ms and a

relative refractory time of 2 ms are imposed. Average event rate for these

parameter choices is 14.7 Hz. The statistical properties of the resulting

fractal spike train are shown in Figure 8.

Statistical Analysis: Temporal Autocorrelation

For a discrete (point) process such as a spike train, or a train of release

events, autocorrelation function G(τ) characterizes the likelihood of

observing two events separated by a time interval equal to τ. It is defined

by

(8)

where µ is the average event rate.  In this normalization the auto-

correlation function is therefore equal to the difference between the

conditional probability rate of observing an event at (or close to) time

t + τ, given an event at (or close to) time t, and the average (unconditional)

event rate µ. Here we assume that the process is stationary, so neither

G(τ) nor µ depend on t. Autocorrelation function approaches zero as τ →
∞, since the correlation between the occurrences of two events should

decrease as the time between the events grows.

Sometimes it may be convenient to normalize the autocorrelation by

the average event rate; the resultant quantity is referred to as the

coincidence rate: g(τ) = G(τ)/µ + 1. The advantage of such a correlation

measure is that it does not depended on the overall level of activity, i.e. it

will not change if the event rate is modified by a constant factor.
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Statistical Analysis: the Fano Factor

The Fano factor characterizes the f luctuations of a point process, and is

defined by the ratio of the variance and the mean of the number of events

in a given time duration T (Fano, 1947):

(9)

The Fano factor is equal to 1 for a Poisson process for any time interval T:

in this case var[n(T)] = 〈n(T)〉 = µT, where µ is the average event rate. F(T)

is <1 for a process more regular than Poisson, and is >1 for a process with

f luctuations larger than those in a Poisson process.

Results

Synaptic Response to Constant-frequency Stimulation

In response to a stimulus train, the model synapse may display

either facilitation or depression of response, depending on

values of model parameters. We choose two sets of parameter

values, corresponding to regimes of strong facilitation and strong

depression (Fig. 2). In each of these two regimes, the release

probability and release event sequence are shown in Figure 2A

for two sample trials of constant-frequency stimulation. Since

only one release is allowed per action potential, synaptic output

is a binary event sequence (release/failure). Toward the end of

the traces there are periods of zero release probability, which are

the times where the vesicle pool is completely depleted. The

trial-averaged release probability 〈pr〉, which represents the

average synaptic response per stimulus, is shown in Figure 2B.

These time courses of short-term plasticity are similar to those

observed experimentally in cortical synapses [cf. Fig. 2 in

(Dobrunz and Stevens, 1997)].

In contrast to the depression regime where 〈pr〉 decreases

monotonically, in the case of facilitation 〈pr〉 initially grows, until

vesicle depletion takes over; for both regimes, release probability

eventually approaches a stationary state, 〈pr〉ss. The characteristic

time of response decay in the depression regime depends both

on the recovery time constant τD and the rate of stimulation r,

and is typically much shorter than τD. It is smaller with larger αV

or higher stimulation rate r (Wang, 1999; Matveev and Wang,

2000).

In Figure 3A, the steady-state release probability 〈pr(r)〉ss is

plotted as a function of the stimulation rate. In the facilitation

regime, this dependence is non-monotonic, displaying a max-

imum near 6 Hz (Markram et al. 1998). However, in both cases

the synaptic response rate, given by the product of 〈pr(r)〉ss and

the stimulation rate r, increases monotonically and approaches a

plateau at high stimulation frequencies (Fig. 3B). The saturation

of the response rate implies that the steady-state release

probability decays as 1/r at high rates, due to vesicle depletion

(Liley and North, 1952). Therefore, the response rate becomes

insensitive to the frequency of sustained presynaptic stimulation

at high input rates (Abbott et al., 1997; Tsodyks and Markram,

1997).

Response to Bursty Spike Trains

Our synapse model can display various degrees of short-term

F T
n T

n T
b g

b g
b g

=
var

Figure 2. Response of the model to constant-frequency stimulation. (A) An example
with a stimulus rate of 20 Hz; (a) stimulus train, (b) response in the facilitation regime,
(c) response in the depression regime. In (b) and (c), two sample trials are shown. Black
vertical bars represent release events; the height of the thick gray bars denotes the
release probability at the time of arrival of a spike. Initial release probabilities are p0 =
0.1 and p0 = 0.9 for the facilitation and depression regimes respectively. For both cases,
N0 = 8 and τD = 2 s. Facilitation parameters in (b) are τF1,2,3 = 35 ms, 190 ms, 2 sec;
C1,2,3 = 0.9, 0.95, 0.8. (B) Trial-averaged release probability as a function of time in the
facilitation (full circles) and depression (open circles) regimes. Same parameter values
as in (A).

Figure 3. Dependence of steady-state synaptic response on the stimulation frequency.
Curves with filled and open circles correspond to facilitation and depression regimes
respectively. (A) Steady-state release probability. In the facilitation regime, release
probability is non-monotonic, reaching a maximum at ∼ 6 Hz. Parameter values are the
same as in Figure 2. (B) Steady-state synaptic response rate, given by the product of the
average release probability and stimulation rate. In both regimes, response amplitude
reaches a plateau at high firing rates. The value of the plateau is insensitive to initial
release probability and facilitation, but depends on N0 and τD: 〈pr〉r ≈ N0/τD.
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facilitation and depression, depending on the choice of

parameters. As we have seen above, in response to a constant-

frequency input train, the behavior of the synapse in regimes of

strong facilitation and depression differs dramatically only

during the initial few stimuli, but not in the steady state (Figs 2B,

3B). The situation, however, is different for more complex input

patterns. When the stimulation train possesses a rich temporal

structure, the input rate is constantly changing in time, which

unceasingly modifies the internal state of the synapse due to

activity-dependent, short-term plasticity, and the output is

expected to be different at a strongly facilitating synapse

compared to a strongly depressing synapse. Here we test this

idea using real spike trains recorded in vivo from cortical cells,

as well as spike sequences generated numerically.

Neuronal firing patterns recorded from different cortical areas

of both anesthetized and behaving animals reveal a rich temporal

structure: periods of rapid firing alternate with periods of

relative inactivity, and bursts of closely spaced spikes are often

observed along with spikes separated by longer time intervals

(Bair et al. 1994; Gray and McCormick, 1996). It is conceivable

that short-term plasticity could allow the synapse to select

specific temporal features from the input spike train for

transmission to the postsynaptic neuron. For instance, Lisman

suggested that facilitation enables synapses to respond reliably to

bursts of spikes, which might contain most of the information

carried by the spike train, while filtering out stand-alone tonic

spikes that could represent unwanted noise (Lisman, 1997). An

alternative possibility is that bursts and single spikes could code

for different features of the same stimulus (Cattaneo et al., 1981;

DeBusk et al., 1997).

Here we study quantitatively the ability of the model synapse

to detect bursts by analyzing its response to burst-rich stimulus

trains. As a specific example, we drive the model with a spike

train recorded in the visual cortex of the awake monkey, in

response to a grating visual stimulus (Fig. 4A). This cell displays

‘chattering’ behavior (Gray and McCormick, 1996; Wang, 1999),

firing bursts and single spikes rhythmically; the ISI histogram is

bimodal (Fig. 4B) and the autocorrelation function for the given

cell shows a pronounced oscillatory component in the 30–35 Hz

frequency range (Fig. 4C). As seen in Figure 4A, in the facilitation

regime the release probability is substantially enhanced within a

burst of spikes. By contrast, in the depression regime the release

probability is typically reduced within a burst due to vesicle

depletion. In Figure 4A the time-averaged release probability 〈pr〉
is about the same in the depressing and facilitating cases.

To characterize the ability of the synapse to detect bursts, we

calculate separately the release probability for a single spike (pS)

(i.e. fraction of single spikes that lead to a vesicle release) and

that for a spike within a burst (pB). The ratio between these two

values, pB/pS, is calculated for different model parameters

covering a continuous range from the strong facilitation regime

to the strong depression regime. A burst spike is defined as a

spike that is preceded or followed by another spike within a

short time interval of 10–15 ms; this interval corresponds to the

trough in the bimodal ISI distribution (such as one seen in Fig.

4B). In this definition burst spikes correspond to the short ISI

mode in the ISI distribution.

Since we are mostly interested in spike trains with relatively

high spike rates (>10 Hz), we reduce the number of facilitation

processes to two, assuming that the slowest facilitation com-

ponent is close to saturation at high firing frequencies, and does

not significantly affect the character of synaptic response. As can

be seen in Figure 4, we find that in the case of strong facilitation,

the synapse can be 50% more likely to respond to an incoming

spike if it belongs to a burst. Conversely, in the strong depression

case, synapse is almost twice as likely to respond to a single spike

than a spike within a burst, since vesicle depletion makes

multiple release events during a single burst less probable. For a

certain intermediate plasticity regime, facilitation balances

depression, and the release probability is the same for any spike.

Naturally, this ability of the synapse to discriminate the bursts

depends crucially on the facilitation time constants, especially

the shortest one τF1. The effect is expected to be optimal if τF1 is

shorter than the average interval between single spikes and

between a single spike and a burst (so that facilitation decays

away between single spikes), but significantly longer than the

ISIs within a burst (so that facilitation accumulates during a

burst). This is demonstrated in Figure 4E, where the behavior of

the release probability ratio pB/pS is shown as a function of τF1.

One can see that the maximal burst discrimination is achieved

when the facilitation decay time matches the average burst

Figure 4. Response of the model synapse to a spike train recorded from the visual
cortex of the awake monkey, in response to a grating stimulus (spike train provided by
Charles Gray and Rony Azouz). (A) Trial responses to a segment of the spike train, in the
facilitation and depression regimes. Thin lines: input spikes and synaptic release events;
gray bars: release probability at the time of spike arrival. Parameters for the depression
regime: N0 = 7, p0 = 0.95, τD = 1 s; for the facilitation regime: N0 = 12, p0 = 0.11,
τD = 1 s, C1,2 = 0.9, 0.95; τF1,F2 = 15, 190 ms. Average stimulation rate is 38 Hz.
Average release probabilities are 〈pr〉 = 0.172 in the facilitation and 〈pr〉 = 0.170 in the
depression regimes. (B) Interspike interval histogram (ISIH) for the experimental spike
train exhibits bimodal character. (C) Autocorrelation function reveals oscillations around
32 Hz. (D) The ratio of release probabilities for a spike in a burst (pB) and an isolated
spike (pS), as a function of short-term synaptic plasticity. Parameters are varied linearly
from strong facilitation (N0 = 12, p0 = 0.05, C1 = 0.9, C2 = 0.7) to strong depression
regime (N0 = 3, p0 = 0.95, C1 = C2 = 0). Time constants are not varied (τD = 1 s,
τF1 = 15 ms, τF2 = 190 ms). (E) Dependence of the pB/pS ratio, in the regime of strong
facilitation, on the fast facilitation time constant τF1, with other parameters kept fixed.
This ratio shows a peak at τF1 ≈ average burst duration (BD = 15.4 ms). The average
ISI within a burst ISIB = 5.5 ms, and the average interval between single spikes and
between isolated spikes and bursts ISIS = 42.2 ms.

Cerebral Cortex Nov 2000, V 10 N 11 1147



duration. For the same reason, the pB/pS ratio will be greater if

the second facilitation time constant, τF2, is smaller and closer to

the average burst duration.

A second example is a bursty spike train recorded from the

monkey prefrontal cortex during the delayed period of an

oculomotor delayed response task (Fig. 5A); it thus represents

mnemonic neuronal activity correlated with working memory

(Chafee and Goldman-Rakic, 1998). This cell shows a strong

propensity to fire brief bursts of spikes, as evidenced by visual

inspection of the spike train shown in Figure 5A and by the peak

in the ISIH at very short intervals (Fig. 5B). This cell displays a

strong positive autocorrelation at short temporal scale (Liu et al.,

1998), as demonstrated by the large peak in the autocorrelogram

(Fig. 5C), but does not exhibit oscillatory behavior. Similarly to

the case of the chattering cell from the visual cortex, we found

that for a facilitating synapse the release probability is signifi-

cantly higher for a spike belonging to a burst than for an isolated

spike; the opposite is true for a depressing synapse (Fig. 5A). The

pB/pS ratio is 1.5 in the strongly facilitating regime, and 0.55 in

the strongly depressing regime (Fig. 5D). Again, the burst detec-

tability is optimal if there is a match between the time constant

of short-term facilitation and the mean burst duration (Fig. 5E).

Therefore, our conclusion about the optimal facilitation time

constant for burst discrimination is rather general and is not

limited to a particular type of burst-containing spike train. To

further confirm this point, we also considered artificial random

bursty spike trains generated numerically according to a

pseudo-Markov stochastic process (see Materials and Methods,

and Fig. 6A). In this case the burst-discriminating ability of the

synapse in the facilitating regime is significantly higher (Fig.

6B,C), and the release probability for a spike within a burst is

almost twice as high as that for an isolated spike. As in the case

of spike trains recorded in vivo, the pB/pS ratio is maximized

when the dominant facilitation time constant matches the

average burst duration (Fig. 6C). The greater burst discrim-

ination is realized because of the larger average number of spikes

within a burst (6 compared to 2–3 for the chattering cell spike

train), and longer average interval between bursts and stand-

alone spikes. Thus, the average number of spikes in a burst and

Figure 5. Response of the model synapse to a spike train recorded from a neuron in the
monkey prefrontal cortex during the delay period in an oculomotor delayed-response
memory task (spike train provided by Matt Chafee and Patricia Goldman-Rakic). (A) Trial
responses to a segment of the spike train, in the facilitation and depression regimes.
Synaptic parameters same as in Figure 4A. Average stimulation rate is 36 Hz. Average
release probabilities are 〈pr〉 = 0.182 in the facilitation and 〈pr〉 = 0.186 in the
depression regimes. (B) Interspike interval histogram and (C) autocorrelation function for
the experimental spike train. (D) The ratio of release probabilities for a spike in a burst
(pB) and an isolated spike (pS), as a function  of  short-term synaptic plasticity.
Conventions and parameters same as in Figure 4D. (E) Dependence of the pB/pS ratio, in
the regime of strong facilitation, on the fast facilitation time constant τF1, with other
parameters kept fixed. This ratio shows a peak at τF1 ≈ average burst duration (BD =
14.7 ms). The average ISI within a burst ISIB = 5.1 ms, and the average interval
between single spikes and between isolated spikes and bursts ISIS = 50.7 ms.

Figure 6. Response of the model synapse to a burst-rich spike train generated
according to a two-state stochastic process (Ekholm and Hyvärinen, 1970). (A) Trial
responses to a 2.9 s segment of the spike train. The average number of spikes in a burst
is nburst = 6; average number of single spikes between bursts is nsingle = 5.7; average
firing rate is 16 Hz. Conventions and parameters same as in Figure 4A. (B) Burst-
discriminating ability as a function of synaptic parameters. Conventions same as in
Figure 4D. Parameters are varied linearly left to right from strong facilitation values (N0
= 12, p0 = 0.07, C1 = 0.9, C2 = 0.95) to strong depression values (N0 = 3, p0 =
0.92, C1 = C2 = 0). Time constants are not varied (τD = 2 s, τF1 = 35 ms, τF2 = 190
ms). (C) Burst-discriminating ability of a strongly facilitating synapse as a function of the
facilitation time constant τF1. Conventions same as in Figure 4E. Vertical lines mark the
duration of the ISI within a burst (ISIB = 4.5 ms) and the average burst duration (BD =
22.5 ms). The average interval between stand-alone spikes and between a single spike
and a burst is ISIS = 105 ms. (D) Burst-discriminating ability of a strongly facilitating
(squares) and a strongly depressing (triangles) synapse as a function of the number of
spikes per burst. Average firing rate varies from 10.9 to 19.5 Hz as nB is increased from
2 to 9. Open circles correspond to nB = 6 used in (A)–(C),(E). (E) Burst-discriminating
ability of a strongly facilitating (squares) and a strongly depressing (triangles) synapse
as a function of the average interval between isolated spikes, ISIS. Average firing rate
varies from 53.5 to 5.5 Hz over the range of ISIS covered in this plot (ISIS = 30–315 ms).
Open circles mark ISIS = 105 ms used in (A)–(D).
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the stimulation ‘duty cycle’ are parameters that critically

determine the ability of the synapse to detect bursts in the given

stimulation pattern. This is demonstrated in Figure 6, where the

ratio of release probabilities for a burst spike and a single spike is

shown to increase monotonically as a function of the number of

spikes per burst (Fig. 6D), and the length of the interval between

isolated spikes (Fig. 6E).

Variation of the depression recovery time parameter has a

much weaker effect on the burst discrimination ability of the

model synapse. Changing τD from 1 to 4 s leads to an increase in

the pB/pS ratio of at most 30%, with significant increase taking

place only under conditions of strong facilitation and large nB

(simulation results not shown). This is because in the absence of

facilitation an increase in τD causes comparable decrease in both

pB (response to a burst spike) and pS (response to a single spike),

but strong facilitation partially compensates for stronger depres-

sion during a burst.

Response to Fractal Spike Trains

It has been traditionally assumed that a sequence of action

potentials produced by a firing neuron can be accurately

represented by a ‘memoryless’ stochastic Poisson process, in

which individual ISIs are statistically independent of each other

(Mueller, 1954; Kuff ler et al., 1957; Bishop et al., 1964; Smith

and Smith, 1965). However, it has been established that long

sequences of action potentials recorded in a variety of neural

systems exhibit considerable long-term autocorrelations and

reveal fractal (self-similar) temporal structure, characterized by

the power-law scaling of autocorrelation with time and 1/f

behavior of the power spectrum. This effect has been observed

in visual and auditory systems of vertebrates and invertebrates

(Teich, 1989, 1992; Turcott et al., 1995; Lowen and Teich, 1996;

Teich et al., 1997), in somatosensory cortex (Wise, 1981), and

reticular formation neurons (Grüneis et al., 1993). Thus, it

appears that this property of neural firing is common and it is

therefore of interest to study how the statistics of such

self-similar signals are modified by short-term synaptic dynamics.

For this purpose we have generated a fractal spike train

according to the fractal shot-noise driven doubly stochastic

Poisson model (see Materials and Methods), and used it as an

input to the model synapse. As shown in Figure 7, in response to

such a fractal spike train, the output of the synapse model is

dramatically different in the facilitation and depression regimes.

For a fair comparison, the overall average release probability is

adjusted to be the same in these two cases, so that the distinct

statistics of the output patterns must be accounted for by the

difference in the synaptic temporal dynamics rather than in the

average transmission efficiency. For a facilitating synapse, the

release probability is very small for an isolated spike, but is

greatly increased during a cluster of spikes, whereas for a

depressing synapse the release probability is significant for an

isolated spike, but usually decreases to zero during a cluster of

spikes due to vesicle depletion. Therefore, facilitation is

expected to enhance temporal autocorrelation of the release

event sequence at relatively short term scales (e.g. within a

cluster), whereas depression should reduce the autocorrelation.

Statistical properties of the input stimulus train and output

release trains are compared in Figure 8. In Figure 8A the inter-

stimulus interval histogram (ISIH) is superimposed with the

output interrelease interval histogram (IRIH). Note the much

larger probability of short IRIs in the facilitation regime than in

the depression regime. Also, the probability is larger for IRIs

than for ISIs at long time intervals, because synaptic transmission

is not reliable (overall average release probability is 0.15 and 0.17

for the facilitating and depressing regimes respectively) so that

the mean IRI is longer than the mean ISI. Figure 8B shows the

Fano factor, which characterizes the temporal f luctuations of

event counts at different time-scales. For the fractal input train,

the Fano factor grows with time, which ref lects the presence of

spike-count variations at all time-scales. The Fano factor of the

release event sequence remains close to unity at all time-scales in

the depression regime, which is expected for a Poisson process

with spike count variance equal to its mean. Even in the

facilitation regime, the Fano factor is greatly reduced compared

to its value for the input spike train, especially at time-scales of

1 s and beyond. Therefore, synaptic depression leads to the

reduction of high variability present in the input. We note that

these results also apply to the statistical properties of combined

response of several synaptic connections, since release events at

different synapses are statistically independent. For instance, the

temporal autocorrelation of the postsynaptic response will be

equal to the sum of response autocorrelations of individual

synapses.

The decorrelation effect of short-term synaptic plasticity is

quantified by comparing the temporal correlation and power

spectrum of the synaptic output to those of the fractal input (Fig.

Figure 7. A sample spike train generated according to the fractal shot-noise driven doubly stochastic Poisson process (Lowen and Teich, 1991) and synaptic responses for the strong
facilitation and depression regimes. Average input spike rate is r = 14.7 Hz. Synaptic parameters are N0 = 7, τD = 2 s, p0 = 0.95 for the depression regime, and N0 = 12, τD =
2 s, p0 = 0.11; τF1,2 = 35, 190 ms; C1,2 = 0.9, 0.95 for the facilitation regime. Average release probabilities are 〈pr〉 = 0.211 for the facilitation regime and 〈pr〉 = 0.230 for the
depression regime. The inset shows a cluster in the input spike train with greater resolution. Note the dramatic increase of the release probability during a cluster in the facilitation
regime.
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9). For the fractal input train, both temporal correlation and

power spectrum display power laws in time (manifested by the

linear regions in log–log plots, Fig. 9). As expected, short-term

synaptic facilitation leads  to  an increase in  autocorrelation

magnitude at short time-scales, while depression dramatically

reduces correlations (Fig. 9A). The dip in the millisecond time

range results from refractoriness of vesicle release. Even in the

facilitation regime, the long-term temporal correlations that are a

hallmark of fractal signals are reduced at time-scales longer than

several hundred milliseconds. The power spectrum of the

output train is virtually f lat for both facilitating and depressing

synapses (Fig. 9B), in this sense we can say that short-term

synaptic depression can effectively ‘whiten’ the input, and

reduce strong redundancies present in the inputs in the form of

temporal correlations. Goldman and colleagues have previously

shown a decorrelation effect by synaptic depression in the case

where the input train has a correlation time of a few hundreds of

milliseconds (Goldman et al., 1999). Here, it is demonstrated

that this synapse-specific mechanism can even  decorrelate

fractal-like inputs with correlations at all time-scales.

Discussion
The present model study was partly motivated by the recent

experimental finding that short-term synaptic plasticity is

differentially expressed in cortex: some synapses show strong

depression while others express pronounced facilitation

(Thomson, 1997; Thomson and Deuchars, 1997; Markram et al.,

1998; Reyes et al., 1998; Varela et al., 1999). To shed light on the

computational implications of this differential short-term

plasticity, we used a stochastic model of short-term synaptic

dynamics and investigated  how a facilitating or depressing

synapse would respond to complex stimuli similar to those

occurring in the intact brain. Our synapse model includes a

vesicle turnover process and a facilitation mechanism, with the

constraint that at most one vesicle can be released per stimulus

(Triller and Korn, 1982; Redman, 1990; Korn and Faber, 1991;

Korn et al., 1994; Stevens and Wang, 1995).

It has been proposed that bursts of spikes and isolated spikes

in a neuronal spike train could differ in the extent and kind of

information that they provide about the external stimulus. For

example, it has been reported that orientation of a  visual

stimulus is encoded in the burst component of the firing

discharges in visual cortical neurons, while the isolated spike

component is correlated with the contrast of the stimulus

(Cattaneo et al., 1981; Livingstone, 1996; DeBusk et al., 1997).

For motion-sensitive visual cells of the cat superior colliculus,

evidence suggests that stimulus velocity is encoded in relative

durations of bursting versus ‘resting’ (low-frequency) episodes

(Mandl, 1993). If bursts and isolated spikes encode different

types of information, then it would be important for a synapse to

be able to respond differently to isolated spikes and spikes

within a burst, thereby selecting the type of information that is

transmitted to the postsynaptic neuron. To study this possibility,

we have analyzed the ability of a facilitating synapse to respond

preferentially  to bursts  of action potentials (Lisman, 1996;

Thomson, 1997; Wang, 1999). This was done by driving the

synapse model with burst-rich spike trains recorded from visual

(Fig. 4) and prefrontal cortices (Fig. 5) of awake and behaving

Figure 8. Interval distribution and variability of a fractal signal before and after
transmission through a model synapse. Both linear and log–log plots are given for each
curve. Thick solid lines: presynaptic spike train; thin solid and dashed lines: output
release event sequences for facilitation and depression regimes respectively. (A)
Comparison of ISI distribution with the interrelease event interval distributions. (B) Fano
factors for the fractal input and the synaptic outputs. For the fractal input, away from the
upper and lower cut-offs the Fano factor behaves as F(T) ∼ 1 + cT2(1 – β), where β =
0.9, and c is a constant. In the depression regime the Fano factor of the output release
train is close to 1, as expected for a totally uncorrelated Poisson train. (Synaptic
parameters are N0 = 5, τD = 2 s, p0 = 0.9 for the depression regime, and N0 = 8, τD
= 2 s, p0 = 0.02; τF1,2,3 = 35 ms, 190 ms, 2 s; C1,2,3 = 0.9, 0.95, 0.8 for the
facilitation regime.)

Figure 9. Temporal correlation and power spectrum of a fractal signal before and after
transmission through a model synapse. Conventions and parameters same as in Figure
8. (A) Autocorrelation for the fractal signal and the synaptic output. Sharp decline at
small time scales is due to the refractory time. (B) Power spectral density for the fractal
input and the synaptic outputs. For the fractal input, away from the upper and lower
cut-offs the autocorrelation is approximated by g(τ) ≈ 1 + cτ1 – 2β, and the power
spectrum behaves as S(f) ≈ 1 + cf–2(1 – β), where β = 0.9, and c, c are constants. In
the depression regime, the input signal is decorrelated by the synaptic dynamics, and
the power spectrum of the output release train becomes flat (‘whitened’).
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monkeys, and with artificially generated spike trains (Fig. 6). We

quantified the burst discrimination capability of the synapse by

the ratio between the release probability for a spike within a

burst (pB) and that for an isolated spike (pS). It was found that

pB/pS can be as much as five times higher for a highly facilitating

synapse than for a strongly depressing synapse (Fig. 6C). We

identified two quantitative conditions for optimal burst

discrimination by a plastic synapse. First, the effect is maximized

when the facilitation time constant matches the average burst

duration (Figs 4E, 5E, 6C). Second, burst discrimination can only

be achieved for spike trains with a high number of spikes per

burst (so that there is significant facilitation during a burst; see

Fig. 6D), and long time intervals between two consecutive

bursts or between a burst and a single spike (so that facilitation

decays away between two spikes not belonging to the same

burst; see Fig. 6E). The existence of several facilitation com-

ponents with disparate decay times points to the possibility that

a synapse may be tuned to detect temporal clustering of spikes in

the presynaptic stimulation train at several distinct time-scales.

How an optimal match between the facilitation kinetics (a

synaptic property) and the characteristics of the bursty spike

train (a neuronal property) could be achieved in a neural system

remains an open question.

Neuronal spike patterns recorded in a variety of neural

systems were shown to possess self-similar temporal structure,

characterized by long-lasting correlations (Teich, 1992; Lowen et

al., 1997). We analyzed the effects of short-term plasticity on

transmission of such fractal inputs using numerically generated

spike trains. We found that facilitation enhances correlations

present in the presynaptic stimulation pattern, at short

time-scales. On the other hand, depression drastically reduces

correlations in the release sequence at all time-scales and

destroys the power-law scaling of the output autocorrelation

(Fig. 8). This result agrees with and extends the conclusions of

the previous work (Goldman et al., 1999), which reported

decorrelation by a depressing synapse model of an input train

with a characteristic correlation time constant of a few hundreds

of milliseconds. Statistical analysis revealed that sensory inputs

from the external world display correlations at all scales

according to fractal-like scaling laws (Ruderman, 1994; van

Hateren, 1997). It has been suggested that neural coding

efficiency of sensory inputs could be enhanced by a reduction in

input redundancy (i.e. strong correlations) (Barlow, 1961; Atick,

1992; Goldman et al., 1999). The present work demonstrates

that short-term synaptic depression is able to remove temporal

correlations at all scales and ‘whiten’ fractal-like inputs.

Correlations could be preserved or even enhanced at short time-

scales if a synapse also displays activity-dependent facilitation.

Therefore, decorrelation and redundancy reduction may not

necessarily exclude the presence of correlations at shorter time

scales (from a few to a few hundreds of milliseconds) which is

often seen in cortical neurons (Abeles et al., 1994; Gray, 1999;

Singer, 1999).

Our theoretical predictions could be tested by using

fractal-like stimulation train in studies of synaptic transmission in

cortex. A more indirect approach would be to compare temporal

autocorrelations of two monosynaptically connected neurons

along a sensory pathway. Such a comparison was done for the cat

retinal ganglion cells and neurons in the lateral geniculate

nucleus, during spontaneous discharges (Teich et al., 1997). It

was found that fractal-like temporal statistics are similar in both

cell populations, suggesting minimal decorrelation effect at the

retino-geniculate synapses. On the other hand, the study by

Teich and colleagues also indicates that fractal-like long-term

correlations could be generated intrinsically in the visual system,

since the activities recorded were spontaneous in the absence of

visual stimuli (Teich et al., 1997). Long-term correlations could

be introduced by internal cellular mechanisms acting either at

the synaptic level or at the level of spike generation (Teich,

1992). Indeed, analysis of exocytic events at neuromuscular

junctions and at the rat hippocampal synapses in culture pro-

vided evidence for fractal-like scaling in the rate of spontaneous

release events (Lowen et al., 1997). If the self-similar behavior is

caused by intracellular mechanisms acting predominantly at the

synaptic level, this could indicate that short-term plasticity itself

displays fractal properties, and the decay of some facilitation and

depression components could be power-law rather than

exponential in time.

There is evidence that depression mechanisms beyond vesicle

depletion contribute to the short-term depression observed at

central synapses (Bellingham and Walmsley, 1999). For instance,

depression may result from calcium-dependent inactivation of

exocytosis machinery (Hsu et al., 1996; Matveev and Wang,

2000). Such an effect would further decrease the pB/pS ratio in

the response of the depressing synapse to bursty spike trains,

and would strengthen the decorrelation effect of short-term

depression described here. We have chosen not to incorporate

this inactivation mechanism into our model since it would not

affect the main conclusions of this work, and would require

including parameters with values that are currently not

constrained by experimental data.
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