
A Generic Algorithm for Program Repair
Besma Khaireddine

University of Tunis Manar, Tunisia
khaireddine.besma@gmail.com

Aleksandr Zakharchenko
NJIT, Newark NJ

az68@njit.edu

Ali Mili
NJIT, Newark NJ

mili@njit.edu

Abstract—Relative correctness is the property of a program
to be more-correct than another with respect to a specification;
whereas traditional (absolute) correctness distinguishes between
two classes of candidate programs with respect to a specification
(correct and incorrect), relative correctness defines a partial
ordering between candidate programs, whose maximal elements
are the (absolutely) correct programs. In this paper we argue
that relative correctness ought to be an integral part of the
study of program repair, as it plays for program repair the
role that absolute correctness plays for program construction:
in the same way that absolute correctness is the criterion by
which we judge the process of deriving a programP from
a specification R, we argue that relative correctness ought to
be the criterion by which we judge the process of repairing a
program P to produce a program P

′ that is more-correct than
P with respect to R. In this paper we build on this premise
to design a generic program repair algorithm, which proceeds
by successive increases of relative correctness until we achieve
absolute correctness. We further argue that in the same way that
correctness ideas were used, a few decades ago, as a basis for
correct-by-design programming, relative correctness ideas may
be used, in time, as a basis for more-correct-by-design program
repair.

Index Terms—Oracle design, program repair, absolute cor-
rectness, relative correctness, elementary fault removal, Siemens
benchmark.

I. PROGRAM REPAIR WITH RELATIVE CORRECTNESS

Relative correctness (introduced in [19]) is the property of
a program to be more-correct than another with respect to a
given specification. Whereas traditional (absolute) correctness
distinguishes between two classes of candidate programs (cor-
rect, incorrect), relative correctness defines a partial ordering
between candidate programs, whose maximal elements are the
(absolutely) correct programs. While we acknowledge the sig-
nificant advances achieved in the area of automated program
repair, we feel that consideration of relative correctnessin the
workflow of program repair methods has the potential to make
these methods more effective and more efficient.

• Improved Effectiveness. Program repair proceeds through
two broad steps:patch generation, when candidate
patches are generated from the original faulty program;
and patch validation, when the generated patches are
tested to assess their validity. As we discuss in re-
lated work, section V-B, current program repair methods
perform patch validation through a number of criteria,
which test various aspects/ dimensions/ approximations
of relative correctness, but not relative correctness per
se. Yet we feel that program repair is inconceivable
without a vetted definition of relative correctness. In the

same way that absolute correctness is the criterion by
which we judge the derivation of a programP from
a specificationR, relative correctness ought to be the
criterion by which we can judge that a candidateP ′ is a
valid repair for programP with respect to specificationR.
In this paper, we propose a generic algorithm for program
repair, which proceeds iteratively by enhancing relative
correctness until it achieves absolute correctness.

• Improved Efficiency. The definition of relative correctness
enables us, for a given level of granularity at which we
want to model faults, to define the concept ofelementary
fault removal, which represents a unitary fault removal
increment. This concept enables us, in turn, to distinguish
between a single multi-site fault and multiple single-site
faults. This distinction is important because if we are
interested to remove several single-site faults (which are
the most common type) then we can remove them one by
one and test the program for relative correctness at each
step; on the other hand, if we want to remove a multiple-
site fault, then the relevant multiplicity is the number of
sites in the faults (two or three, at most), not the number
of faults in the program (unbounded).

In this paper, we briefly present a definition of relative correct-
ness, due to [8, 19], then we use it to sketch an algorithm for
program repair; our algorithm relies on the existence of a patch
generator, and focuses exclusively on the patch validationstep.
In section II we introduce some elements of mathematical
notation, then we present our definition of relative correctness
and discuss why we feel that this definition is appropriate
for our purposes. In section III we present our algorithm,
and discuss its validity in light of the definitions given in
section II. In section IV we show the results of an experiment
where we apply the algorithm, albeit partially by hand for
now (as its automation is under way) on sample programs
from the Siemens Benchmark, and draw some lessons from
our observations. Finally in section V we briefly summarize
our findings and compare them to related work; in particular,
we show how the solutions adopted by other researchers for
patch validation use approximations of relative correctness, but
not quite relative correctness as we define it and validate it.

II. BACKGROUND

A. Relational Mathematics

We assume the reader familiar with simple relational math-
ematics and we briefly introduce some notations that we use

throughout the paper. Given a programp that operates on
some variablesx and y, we let thespaceof p be the set
S of all the values that the aggregate of variables〈x, y〉 may
take; elements ofS are calledstatesof the program, and are
usually denoted by lower cases. A relationon setS is a subset
of S × S; constant relations on a setS include the empty
relation (φ), the identity relation (I) and the universal relation
(L = S × S); operations on relations include the set theoretic
operations of union, intersection, difference and complement;
other operations include the product of two relations (denoted
by R ◦ R′, or RR′ for short), the converse of a relation (R̂)
and the domain of a relation (dom(R)). Thepre-restrictionof
relationR to setT is denoted byT\R.

A relation R is said to be reflexive if and only ifI ⊆ R,
symmetric if and only ifR ⊆ R̂, antisymmetric if and only if
R ∩ R̂ ⊆ I, and transitive if and only ifRR ⊆ R. A relation
R is said to bedeterministicif and only if R̂R ⊆ I.

B. Absolute Correctness and Relative Correctness

Refinement is a recurrent theme in the study of correctness;
our version of refinement is defined as follows.

Definition 1: Given two relationsR andR′, we say thatR′

refinesR (abbrev:R′ ⊒ R) if and only if RL ∩ R′L ∩ (R ∪
R′) = R.
Intuitively, this means thatR′ captures a stronger requirement
(is harder to satisfy) thanR.

Given a programp on spaceS, we define the function ofp
(denoted byP) as the set of pairs(s, s′) such that if program
p starts execution in states it terminates in states′. We may,
by abuse of notation, refer to a programp by its functionP .

Definition 2: A programp on spaceS is said to becorrect
with respect to specificationR on S if and only if its function
P refinesR.
This definition is identical (modulo differences of notation)
to traditional definitions of total correctness [12, 13, 17]. The
following Proposition, due to [21] sets the stage for the
definition of relative correctness.

Proposition 1: Given a specificationR, a deterministic
program p is correct with respect toR if and only if
dom(R ∩ P) = dom(R).
The setdom(R ∩ P) is the set of initial states on whichP
behaves according toR; we call it thecompetence domainof
P with respect toR.

Definition 3: Due to [19]. Given a specificationR and two
deterministic programsP and P ′, we say thatP ′ is more-
correct (resp.strictly more-correct) thanP with respect toR
if and only if (R ∩ P ′)L ⊇ (R ∩ P)L (resp.(R ∩ P ′)L ⊃
(R ∩ P)L).

In [7] we generalize this definition to non-deterministic
programs, and discuss why this generalization may be the
key to scaling up. To contrast relative correctness with cor-
rectness (Definition 2), we may refer to the latter asabsolute
correctness. For deterministic programsP andP ′, P ′ is more-
correct thanP if and only if the competence domain ofP ′

is a superset of that ofP ; note this does not mean that
P ′ duplicates the correct behavior ofP on its competence

domain (ratherP ′ may have a different correct behavior on
the competence domain ofP). See Figure 1.

How do we know that our definition of relative correctness
is any good? Below are four properties that one would want a
definition of relative correctness to satisfy; we find in [8] that
our definition satisfies all of them.

• Ordering Properties. Relative correctness is reflexive
and transitive, but not antisymmetric (i.e. two candidate
programs could be equally correct, yet compute distinct
functions).

• Relative correctness culminates in absolute correctness.
An absolutely correct program is more-correct than any
candidate program. We write this property as:P ′ ⊒ R ⇔
(∀P : P ′ ⊒R P).

• Enhanced Correctness Implies Higher Reliability. If P ′

is more-correct thanP with respect toR, then it is more
reliable thanP ; but more-reliable is not equivalent to
more-correct:P ′ may be more reliable because its compe-
tence domain includes states that have higher probability
of occurrence than those of the competence domain of
P .

• Relative Correctness and Refinement. ProgramP ′ refines
programP if and only if P ′ is more-correct thanP with
respect toanyspecificationR. We write this property as:
P ′ ⊒ P ⇔ (∀R : P ′ ⊒R P).

In order to contrast relative correctness with absolute
correctness, we present an example of a specification and ten
candidate programs, which we rank by relative correctness
as shown in Figure 2; correct programs are at the top
of the graph. We consider the specificationR on space
S = {a, b, c, d, e}:
R = {(a, a), (a, b), (a, c), (b, b), (b, c), (b, d), (c, c), (c, d), (c, e)},
and we consider the following candidate programs, along
with their competence domains with respect toR:

• P0 = {(a, d), (b, a)}. CD0 = {}.
• P1 = {(a, b), (b, e)}. CD1 = {a}.
• P2 = {(a, d), (b, c)}. CD2 = {b}.
• P3 = {(b, e), (c, d)}. CD3 = {c}.
• P4 = {(a, b), (b, c), (c, a)}. CD4 = {a, b}.
• P5 = {(a, d), (b, c), (c, d)}. CD5 = {b, c}.
• P6 = {(a, c), (b, e), (c, d)}. CD6 = {a, c}.
• P7 = {(a, a), (b, b), (c, c), (d, d)}. CD7 = {a, b, c}.
• P8 = {(a, b), (b, c), (c, d), (d, e)}. CD8 = {a, b, c}.
• P9 = {(a, c), (b, d), (c, e), (d, a)}. CD9 = {a, b, c}.

See Figure 2; programsP7, P8, P9 are (absolutely) correct
while programsP0, P1, P2, P3, P4, P5, P6 are incorrect. Figure
5 shows a more concrete example of programs ordered by
relative correctness.

C. Faults and Fault Removals

Any definition of a fault must imply a level of granularity
at which we want to isolate faults. We use the termfeatureto
refer to any part of the source code at an appropriate level of
granularity, including non-contiguous parts.

Definition 4: Due to [19]. Given a specificationR and a
programP , a fault in programP is any featuref that admits

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0-

-�������:

�������:

XXXXXXXz�������:

XXXXXXXz

XXXXXXXzXXXXXXXzXXXXXXXz

�������:

�������:

�������:

R P P ′�
�
�
�

�
�
�
�

Fig. 1. P
′ ⊒R P , Deterministic Programs

�
�

�
�

��

@
@

@
@

@@

@
@

@
@

@@

�
�

�
�

��

@
@

@
@

@@

�
�

�
�

��

�
�

�
�

��

@
@

@
@

@@

P0

P3

P5

P2

P6

P7, P8, P9

P1

P4

correct
programs

incorrect
programs

�
 �	'

&

$

%
Fig. 2. Ordering Candidate Programs by Relative Correctness

a substitutef ′ such that the programP ′ obtained fromP by
replacingf with f ′ is strictly more-correct thanP . A fault
removal in P is a pair of features(f, f ′) such thatf is a
feature inP and programP ′ obtained fromP by replacingf
with f ′ is strictly more-correct thanP .

This definition of a fault encompasses cases where the
feature in question is non-contiguous, i.e. it may involve two
statements or for example two lexemes that are found in
different locations of the source code. We consider a program
P and a specificationR and we assume that we have identified
two statements, sayf0 andf1 that admit substitutes, sayf ′

0 and
f ′
1, such that the programP ′ obtained fromP by replacing

f0 by f ′
0 and f1 by f ′

1 is strictly more-correct thanP with
respect toR. The question that we address is: do we have
two single-site faults (f0 and f1) or a single two-site fault
(f = 〈f0, f1〉)? The answer depends on whetherf0 alone is a
fault, and whetherf1 alone is a fault, whence the following
definition.

Definition 5: Given a specificationR and a programP , an
elementary faultin programP is a fault such that no part of
it is a fault.

All single-site faults are elementary faults; multi-site faults
are elementary faults if and only if no subset of their ele-
ments is a fault. Figures 3 and 4 (wheret0 represents the
transformationf0 → f ′

0 and t1 represents the transformation
f1 → f ′

1) show the contrast between a single two-site fault
and two one-site faults: in Figure 3 we need to apply both
transformations before the program becomes more-correct;
when we applyt0 alone (resp.t1), we obtainp′0 (resp.p′1,
which is not strictly more-cottect thanp; it is only when we
apply them both that we obtain a strictly more-correct program

pp0’ p1’

p’’

�
�

�
�

�
�

�76

S
S

S
S

S
S

So

t0 t1

t1 t0
(t0, t1)

Fig. 3. One Two-site Fault

p

p0’ p1’

p’’

�
�

�
�

���

@
@

@
@

@@I
@

@
@

@
@@I

�
�

�
�

���
t1 t0

t0 t1

Fig. 4. Two One-site Faults

(p′′). By contrast, Figure 4 illustrates a situation where each
individual transformation raises the relative correctness of the
program (bothp′0 andp′1 are strictly more-correct thanp, and
p′′ is strictly more-correct thanp′0 andp′1, hence by transitivity
strictly more-correct thanp).

III. A N ALGORITHM FOR STEPWISEPROGRAM REPAIR

A. Oracle Design

We consider a programP ′ on spaceS and we are interested
to design an oracle that tests the execution ofP ′ on some
initial state; the oracle takes the form of a binary predicate in
(s, s′), wheres is the initial state ands′ is the final state. What
form this oracle takes depends on what property we want to
test aboutP ′.

1) Absolute Correctness with respect toR: Given a speci-
ficationR on spaceS, the oracle for absolute correctness with
respect toR is denoted asΩ(s, s′) and defined by:

Ω(s, s′) ≡ (s ∈ dom(R) ⇒ (s, s′) ∈ R).

We find in [20] that if a programP satisfies the condition
Ω(s, P (s)) for all s in S then it is absolutely correct with
respect toR. In practice, since we cannot checkΩ(s, P (s))

for all s in S, we check it for a bounded size test dataT .
Hence we define the following predicate:

ΩT (P ′) ≡ (∀s ∈ T : Ω(s, P ′(s))).

We find in [20] that if a programP ′ satisfies this predicate
then it is absolutely correct with respect toT\R.

2) Relative Correctness over a programP with respect to
a specificationR: Given a specificationR on spaceS and
a programP on S, the oracle for relative correctness over
programP with respect toR is denoted byω(s, s′) and defined
by:

ω(s, s′) ≡ (Ω(s, P (s)) ⇒ Ω(s, s′)).

This formula stems readily from the definition of relative
correctness; a programP ′ is more-correct than programP
with respect toR if and only if ω(s, P ′(s)) holds for alls in
S. In practice, since we cannot checkω(s, P ′(s)) for all s in
S, we check it for a bounded size data setT . Hence we define
the following predicate:

ωT (P ′) ≡ (∀s ∈ T : ω(s, P ′(s))).

3) Strict Relative Correctness over a programP with
respect to a specificationR: A programP ′ is strictly more-
correct than a programP with respect to a specificationR if
and only ifP ′ is more-correct thanP , and there exists at least
one elements in S such thatΩ(s, P ′(s)) ∧ ¬Ω(s, P (s)). In
practice, since we cannot checkΩ(s, P ′(s))∧¬Ω(s, P (s)) for
all s in S, we check it for a bounded size data setT . Hence
we define the following predicate:

σT (P ′) ≡ (ωT (P ′) ∧ (∃s ∈ T : Ω(s, P ′(s)) ∧ ¬Ω(s, P (s))))

.

B. Specification

We use the oracles discussed above to design a generic
program repair algorithm; before we present the algorithm,
as discuss its specification.

• Inputs:

– A programP on S (whereS can be inferred from
the variable declarations ofP).

– Test data set,T , a subset ofS.
– SpecificationR on S, in the form of a binary C-like

boolean functionR(s, sprime).
– A specification of the domain ofR, in the form of

a unary C-like boolean functiondomR(s).

• Output: Three possible outcomes, depending on patch
generation:

– A programP ′ that is absolutely correct with respect
to T\R. Note that ifP fails on some state ofT and
P ′ is absolutely correct with respect toT\R thenP ′

is strictly more correct thanP (hence it is a repair
of P) with respect toR.

– A programP ′ that is strictly more-correct thanP
with respect toT\R, though possibly still incorrect.

– A message to the effect that no correctness enhance-
ment of P with respect toR is possible, given the
existing patch generation capability.

Note that whereas other program repair methods require two
test data sets (positive test data, negative test data), we do
not need this information, because it can be inferred from the
available input parameters: The positive test data is, actually
(T∩CD)\R, and the negative test data is(T∩CD)\R, whereCD

is the competence domain ofP with respect toR.

C. Algorithm

This algorithm relies on the availability of a patch generator,
which takes the forms of two functions:

• nextcandidate(base). Given a baseline programbase,
this function returns candidate repairs ofbase in a
deterministic sequence; this can be a mutant generator,
e.g., which takesbase along with with some mutation
parameters/ options and generates, in sequence, all the
relevant mutants for the selected parameters.

• morecandidates(base). Given a baseline programbase,
this boolean function returns true as long it has more
candidate repairs to offer, false otherwise.

This algorithm is generic in the sense that it can be composed
with any patch generator for which we can provide these two
functions.

{programtype base=P; programtype candidate=P;
bool exhausted=false; bool enhanced=false;
while (! abscorT(candidate) && ! exhausted)
{while (morecandidates(base) &&

! strictrelcor(candidate,base))
{// no viable candidate, but we have more
candidate = nextcandidate(base);}
// if candidate is abs. correct done, else..
if (! abscorT(candidate))

{// analysis of exit condition
if strictrelcorT(candidate,base)

{// we let candidate be new base
base = candidate; enhanced=true;
} //also reset patch generation

else
{// we ran out of candidates
exhausted = true;}}}

if (! exhausted)
{cout<<’Correct Program: ’<<candidate<<endl;}

else
if (enhanced)

{cout<<’No correct program found. ’<<endl;
cout<<’Most correct: ’<<candidate<<endl;}

else
{cout<<’No correctness enhancement’<<endl;}}

The following functions are a direct reflection of the for-
mulas presented in section III-A.

bool abscor (candidate, inits)
{stype s; s=inits; candidate();// alters s
return (! domR(inits) || R(inits, s));}

bool abscorT(candidate)
{bool abscorforall; abscorforall=true;
forall (t in T)

{abscorforall
= abscorforall && abscor(candidate,t)};

return abscorforall;}

bool relcor(candidate, base, inits)

{stype s; s=inits; base();//alters s, not inits
bool abscorbase = (!domR(inits)||R(inits,s));
s=inits; candidate(); //alters s, not inits
bool abscorcandidate=(!domR(inits)||R(inits,s));
return (! abscorbase || abscorcandidate);}

bool relcorT(candidate, base)
{bool relcorforall; relcorforall=true;
forall (t in T)
{relcorforall = relcorforall &&

relcor(candidate,base,t)};
return relcorforall;}

bool strict (candidate, base,inits)
{stype s; s=inits; base();//alters s, not inits
bool abscorbase = (!domR(inits)||R(inits,s));
s=inits; candidate(); //alters s, not inits
bool abscorcandidate=(!domR(inits)||R(inits,s));
return (! abscorbase && abscorcandidate);}

bool strictT (candidate, base)
{bool strictforone; strictforone=false;
forall (t in T)
{strictforone = strictforone

|| strict(candidate,base,t)};
return strictforone;}

bool strictrelcorT (candidate, base)
{return relcorT(candidate,base)

&& strictT(candidate,base);}

IV. I LLUSTRATION

A. Experimental Setup

For the purposes of our experiment, we carry out patch
generation by means of a mutation generator, specifically
muJava [5, 16]. According to the specification given in section
III-B, we must provide the following parameters:

• A Program to Repair. We choose thetcas program
taken from the Siemens benchmark, to which we apply
eight modifications (faults) provided in the same bench-
mark [2, 10].

• Test Data. We take the test data setT (of size 1578)
provided by the benchmark for this program.

• Specification. For the sake of this experiment, we use the
original fault-free version oftcas as the specification;
this yields the following code forR:
bool R(s, sprime) // initial, final states

{tcas(); // modifies s, preserves sprime
return (sprime==s);} // candidate = spec?

To run this experiment with non-deterministic spec-
ifications, we are planning cases where the equality
(sprime==s) is replaced by the weaker condition
(EQ(s,sprime)), for some equivalence relationsEQ;
this is currently under way.

• Specification domain. Since we take the correct version of
tcas as specification, and since this program is defined
for all states inT , we letdomR(s) be true.
bool domR(s) {return true;}

Though the algorithm, as written in section III-C, seeks to
build a single path from the faulty version of a program to
a correct version (by successive fault removals), what we
execute for this experiment is a search for all the possible
paths; instead of the inner while loop of the algorithm (section
III-C) we actually execute a for loop that covers all the mutants
of the current base and catalogs those mutants that are strictly

more-correct than the base; the organizational part of thiswork
(management of the evolving graph) is done by hand, as it is
not yet fully automatic.

B. Experimental Observations

The resulting graph is shown in Figure 5; each iteration of
the outer loop generates a new layer of the graph. The bottom
of the graph is the faulty version oftcas, and the top is
the correct version, as found in the Siemens benchmark. Note
that even though we made eight modifications to the original
program, our algorithm made only seven fault removals; this
may be because the eighth modification does not change the
function of the program (it is not a fault) or because the test
dataT is not large enough to distinguish the original program
from the repaired program; in either case, the program at
the top of the graph is certified to be absolutely correct with
respect toT\R.

Now, note that even though the program at the bottom of
the graph has seven faults, only four of them are visible (since
there are four outgoing arcs from the bottom). What happened
to the other three? They are masked, and can only be exposed
as the first four are removed. The lesson we can draw from this
observation: when we observe a failure of a program and we
resolve to repair it, we should not define success as remedial
to that particular failure, because the fault that causes that
failure may be masked by other faults; rather we should view
any enhancement in the relative correctness of the program as
a measure of success/ progress. In other words, we do not get
to decide in what order a program exposes its faults; rather
we let the program reveal its faults in the order it determines.

We must acknowledge that what made our experiment look
so successful is the combination of three conditions, which
do not necessarily prevail in all instances: first, the mutant
generator was parameterized in such a way as to perform
mutations that are of the same nature and the same scale
as the benchmark faults that were introduced; second, all
the faults that were introduced are single-site faults, hence
we were able to remove them by single mutations; third, we
assume the availability of boolean functions that capture the
specificationR and its domain. The first condition pertains
to patch generation, and is a difficult condition to fulfill in
general, because it assumes that we know the nature/ scale of
the faults. The second condition pertains to patch validation,
and is relatively easy to fulfill: first because most faults are
single-site faults; and second, because we can run multiple
mutations to cover the rare cases where they are not. For
illustration, we run the same experiment described above on
the replaceapplication of the Siemens benchmark, to which
we have inserted six modifications. After four iterations (four
fault removals) we reach a program that is more-correct than
the original, but not absolutely correct; when we deploy double
mutation, we break through, generating two separate programs
that are absolutely correct with respect toT\R. So that we
were able to remove five faults (four single-site faults and one
double-site fault) by doing nothing more than double mutation;
if we were using only absolute correctness as the criterion of

Fig. 5. Stepwise Repair oftcas Faults

success, we would have to apply sixtuple mutations to achieve
the same result, an outrageously costly proposition. As for
requiring predicatesR(s, s′) anddomR(s), we admit that this
may limit the scope of our approach; but we also argue that
some form of specification is mandated by other methods to
generate the required positive test data and the negative test
data; all we are doing is making the requirement forR(s, s′)
explicit.

V. CONCLUSION

A. Summary and Prospects

Relative correctness plays for program repair the same role
that absolute correctness plays for program construction:In the
same way that absolute correctness is the criterion by which
we judge the derivation of a program from a specification,
relative correctness ought to be the criterion by which we
judge the transformation of a programP into a program

P ′ through a repair operation. In this paper we derive the
skeleton of an algorithm for program repair, which uses strict
relative correctness oracles to perform patch validation.Our
approach can be characterized by the following premises: it
relies on formal definitions of correctness, relative correctness,
and strict relative correctness; it derives test oracles from
these definitions; it defines success/ progress as any strict
enhancement of relative correctness, rather the remediation
of a specific failure; it controls combinatorial divergenceby
removing faults in sequence rather than simultaneously.

What would be more interesting, perhaps, is to explore how
we can use relative correctness, not to test existing repair
candidates, but rather to generate repair candidates that are
more-correct by construction. In the same way that correctness
ideas were used by researchers such as Dijkstra [9], Gries [12],
Hehner [13], Morgan [23] and others as a basis for correct-
by-design programming, we can imagine ways to use relative

correctness ideas to generate more-correct-by-design program
repairs. This is clearly a long-term research goal, but one that
promises great returns, since it has the potential to guide patch
generation in addition to patch validation.

B. Related Work

We argue that our approach to patch validation, which is
based on the concept of relative correctness, addresses some
shortcomings in existing program repair technology, in terms
of precision, recall, and efficiency [1, 3, 4, 6, 14, 15, 18, 22, 24,
25].

1) Loss of Recall:GenProg [11, 15], for example, generates
candidate repairs by combining a set of elementary mutations
and submitting each mutant to a set of positive test data (which
the original program passes, and we want to preserve) and a
set of negative test data (which the original program fails,
and we want candidates to pass). This approach presents two
impediments for good recall: First, this condition is sufficient
for relative correctness but unnecessary. A candidate program
may fail on the positive test data and still be more-correct
than the original: because specifications are not necessarily
deterministic, correct behavior is not necessarily unique. See
Figure 1. Second, a candidate programP ′ may also fail on the
negative test data and still be more-correct than the original
programP ; the competence domain ofP ′ may be a superset of
that ofP , yet still does not overlap the negative test data. The
loss of recall means that GenProg could very well generate
valid program repairs, but fail to recognize them as such.

2) Loss of Precision:GenProg selects candidate repairs
by maximizing afitness function, which is computed as the
weighted sum of all the test data on which the program runs;
weights are assigned to test data according to their prepon-
derance in some usage pattern, so that the fitness function is
an approximation of the program’s reliability. But we see in
section II-B that relative correctness logically implies,but is
not equivalent to, enhanced reliability. So that maximizing the
fitness function is a necessary condition, but not a sufficient
condition, of relative correctness.

3) Inefficiency: We recognize two sources of inefficiency
in current practice of program repair. First, as we discuss in
section IV-B, faults are prone to mask each other; so that if
we define the success of a repair operation as the remediation
of a specific failure caused by a specific fault, and that fault
is masked by others, we may have to find a combination
of patches that fix all the faults involved in this situation
before the failing behavior is corrected. A more efficient
approach may be to define success as an increase in relative
correctness, and accept any patch that fulfills this criterion,
until the targeted failure is remedied. Second, whenever they
fail to distinguish between a single multi-site fault and several
single-site faults, program repair methods may be pursuing
unnecessary and costly multiple patches where successive
single patches would have been sufficient.

REFERENCES

[1] Martinez M. and Monperrus M. Mining software repair models for
reasoning on the search space of automated program fixing.Empirical
Software Engineering, 2013.

[2] Benchmark. Siemens suite. Technical report, Georgia Institute of
Technology, January 2007.

[3] Kim D., Nam J., Song J., and Kim S. Automatic patch generation
learned from human-written patches. InICSE 2013, pages 802–811,
2013.

[4] Vidroha Debroy and W. Eric Wong. Combining mutation and fault
localization for automated program debugging.Journal of Systems and
Software, 90:45–60, 2013.

[5] Marcio Eduardo Delamaro, Jose Carlos Maldonado, and Auri
Marcelo Rizzo Vincenzi. Proteum /im 2.0: An integrated mutation
testing environment. In W. Eric Wong, editor,Mutation Testing for
the New Century, volume 24, pages 91–101. Springer Verlag, 2001.

[6] F. DeMarco, J. Xuan, D.L. Berra, and M. Monperrus. Automatic
repair of buggy if conditions and missing preconditions with smt. In
Proceedings, CSTVA, pages 30–39, 2014.

[7] J. Desharnais, N. Diallo, W. Ghardallou, M. F. Frias, A. Jaoua, and
A. Mili. Relational mathematics for relative correctness.In RAMICS,
2015, volume 9348 ofLNCS, pages 191–208, Braga, Portugal, Septem-
ber 2015. Springer Verlag.

[8] Nafi Diallo, Wided Ghardallou, and Ali Mili. Correctnessand relative
correctness. InProceedings, 37th International Conference on Software
Engineering, NIER track, Firenze, Italy, May 20–22 2015.

[9] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
[10] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting a

controlled experimentation with testing techniques: An infrastructure and
its potential impact.Empirical Software Engineering: An International
Journal, 10(4):405–435, 2007.

[11] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic
method for automated software repair.IEEE Transactions on Software
Engineering, 31(1), 2012.

[12] David Gries.The Science of Programming. Springer Verlag, 1981.
[13] Eric C.R. Hehner.A Practical Theory of Programming. Prentice Hall,

1992.
[14] Claire LeGoues, Stephanie Forrest, and Westley Weimer. Current

challenges in automatic software repair.Software Quality Journal,
21(3):421–443, 2013.

[15] Claire LeGoues, M. Dewey Vogt, S. Forrest, and W. Weimer. A
systematic study of automated program repair: Fixing 55 outof 105
bugs for $8 each. InProceedings, ICSE 2012, pages 3–13, 2012.

[16] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. Mujava : Anautomated
class mutation system.Journal of Software Testing, Verification and
Reliability, 15(2):97–133, June 2005.

[17] Zohar Manna.A Mathematical Theory of Computation. McGraw-Hill,
1974.

[18] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix:
Scalable multiline program patch synthesis via symbolic analysis. In
Proceedings, ICSE 2016, Austin, TX, May 2016.

[19] A. Mili, M. Frias, and A. Jaoua. On faults and faulty programs. In
P. Hoefner, P. Jipsen, W. Kahl, and M. E. Mueller, editors,Proceedings,
RAMICS 2014, volume 8428 ofLNCS, pages 191–207, 2014.

[20] Ali Mili and Fairouz Tchier.Software Testing: Operations and Concepts.
John Wiley and Sons, 2015.

[21] Harlan D. Mills, Victor R. Basili, John D. Gannon, and Dick R. Hamlet.
Structured Programming: A Mathematical Approach. Allyn and Bacon,
Boston, Ma, 1986.

[22] Martin Monperrus. A critical review of patch generation learned from
human written patches: Essay on the problem statement and evaluation
of automatic software repair. InProceedings, ICSE 2014, Hyderabad,
India, 2014.

[23] Carroll C. Morgan.Programming from Specifications, Second Edition.
International Series in Computer Sciences. Prentice Hall,London, UK,
1998.

[24] Hoang Duong Thien Nguyen, DaWei Qi, Abhik Roychoudhury, and
Satish Chandra. Semfix: Program repair via semantic analysis. In
Proceedings, ICSE, pages 772–781, 2013.

[25] Zhchao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis
of patch plausibility and correctness for generate-and-validate patch
generation systems. InProceedings, ISSTA 2015, Baltimore, MD, July
2015.

