A Generic Algorithm for Program Repair

Besma Khaireddine
University of Tunis Manar, Tunisia
khaireddine.besma@gmail.com

Abstract—Relative correctness is the property of a program
to be more-correct than another with respect to a specificatin;
whereas traditional (absolute) correctness distinguishebetween
two classes of candidate programs with respect to a specifitan
(correct and incorrect), relative correctness defines a padial
ordering between candidate programs, whose maximal elemén
are the (absolutely) correct programs. In this paper we arge
that relative correctness ought to be an integral part of the
study of program repair, as it plays for program repair the
role that absolute correctness plays for program construgon:
in the same way that absolute correctness is the criterion by
which we judge the process of deriving a programP from
a specification R, we argue that relative correctness ought to
be the criterion by which we judge the process of repairing a
program P to produce a program P’ that is more-correct than
P with respect to R. In this paper we build on this premise
to design a generic program repair algorithm, which proceed
by successive increases of relative correctness until we haeve
absolute correctness. We further argue that in the same wayhtat

correctness ideas were used, a few decades ago, as a basis for

correct-by-design programming, relative correctness idas may
be used, in time, as a basis for more-correct-by-design progm
repair.

Index Terms—Oracle design, program repair, absolute cor-
rectness, relative correctness, elementary fault removalSiemens
benchmark.

Aleksandr Zakharchenko Ali Mili
NJIT, Newark NJ NJIT, Newark NJ
az68@nijit.edu mili@nijit.edu

same way that absolute correctness is the criterion by
which we judge the derivation of a program from

a specificationR, relative correctness ought to be the
criterion by which we can judge that a candid&teis a
valid repair for progranP with respect to specificatioR.

In this paper, we propose a generic algorithm for program
repair, which proceeds iteratively by enhancing relative
correctness until it achieves absolute correctness.
Improved EfficiencyThe definition of relative correctness
enables us, for a given level of granularity at which we
want to model faults, to define the conceptetédmentary
fault remova) which represents a unitary fault removal
increment. This concept enables us, in turn, to distinguish
between a single multi-site fault and multiple single-site
faults. This distinction is important because if we are
interested to remove several single-site faults (which are
the most common type) then we can remove them one by
one and test the program for relative correctness at each
step; on the other hand, if we want to remove a multiple-
site fault, then the relevant multiplicity is the number of
sites in the faults (two or three, at most), not the number
of faults in the program (unbounded).

|. PROGRAM REPAIR WITH RELATIVE CORRECTNESS In this paper, we briefly present a Qefinition of relative gctr
. . . . ness, due to [8, 19], then we use it to sketch an algorithm for
Relative correctness (introduced in [19]) is the propeity %rogram repair; our algorithm relies on the existence oftatpa

a program fo b.e more-correct ‘h‘?‘f‘ another with respect t Enerator, and focuses exclusively on the patch validatiem.
given specification. Whereas traditional (absolute) ainess In section Il we introduce some elements of mathematical

distinguishes between two classes of candidate programms ((hotation, then we present our definition of relative comess

LeCt’ mcorrec(';)_(,j relative correctnﬁss defm_es all plartldémng aEHd discuss why we feel that this definition is appropriate
etween candidate programs, whose maximal elements aredfje,, . ,rhoses. In section Ill we present our algorithm,

(absolutely) correct programs. While we acknowledge the siz .y giscuss its validity in light of the definitions given in
hificant advances achieved in the area of automated Progrg@ition 11. In section IV we show the results of an experiment
repair, we feel that consideration of relative correctiesbe | .\ o apply the algorithm, albeit partially by hand for
workflow of program repair_methods has the_ p_otential to make (as its automation is und,er way) on sample programs
these methods more effective and more efficient. from the Siemens Benchmark, and draw some lessons from
« Improved Effectivenes®rogram repair proceeds throughyyr observations. Finally in section V we briefly summarize
two broad steps:patch generation when candidate oy findings and compare them to related work; in particular,
patches are generated from the original faulty prografe show how the solutions adopted by other researchers for
and patch validation when the generated patches argatch validation use approximations of relative corressnbut

tested to assess their validity. As we discuss in rept quite relative correctness as we define it and validate it
lated work, section V-B, current program repair methods

perform patch validation through a number of criteria, Il. BACKGROUND
which test various aspects/ dimensions/ approximations
of relative correctness, but not relative correctness p@r
se. Yet we feel that program repair is inconceivable We assume the reader familiar with simple relational math-
without a vetted definition of relative correctness. In thematics and we briefly introduce some notations that we use

Relational Mathematics



throughout the paper. Given a progrgmthat operates on
some variablest and y, we let thespaceof p be the set
S of all the values that the aggregate of variablesy) may

take; elements of are calledstatesof the program, and are
usually denoted by lower caseA relationon setS is a subset
of S x S; constant relations on a sét include the empty
relation @), the identity relation {) and the universal relation

(L = S x S); operations on relations include the set theoretic

operations of union, intersection, difference and complein
other operations include the product of two relations (dedo
by Ro R’, or RR' for short), the converse of a relatio®)
and the domain of a relatiorl¢m(R)). The pre-restrictionof
relation R to setT is denoted by, R.

A relation R is said to be reflexive if and only if C R,
symmetric if and only ifR C R, antisymmetric if and only if
RN R C I, and transitive if and only ifRR C R. A relation
R is said to bedeterministicif and only if RR C I.

B. Absolute Correctness and Relative Correctness

Refinement is a recurrent theme in the study of correctness;

our version of refinement is defined as follows.

Definition 1: Given two relations? and R/, we say thatR’
refinesR (abbrev:R’ J R) if and only if RLNR'LN(RU
R)=R.

Intuitively, this means thak’ captures a stronger requirement

(is harder to satisfy) thark.

Given a progranp on spaces, we define the function gb
(denoted byP) as the set of pairgs, s’) such that if program
p starts execution in stateit terminates in state’. We may,
by abuse of notation, refer to a progragmy its function P.

Definition 2: A programp on spaceS is said to becorrect
with respect to specificatioR on S if and only if its function
P refinesR.

This definition is identical (modulo differences of notafjo
to traditional definitions of total correctness [12,13,.1The

following Proposition, due to [21] sets the stage for the ,

definition of relative correctness.

Proposition 1: Given a specificationR, a deterministic
program p is correct with respect toR if and only if
dom(R N P) = dom(R).

The setdom(R N P) is the set of initial states on whick
behaves according t&; we call it thecompetence domaiof
P with respect toR.

Definition 3: Due to [19]. Given a specificatioR and two
deterministic programg’> and P’, we say thatP’ is more-
correct (resp.strictly more-correcy than P with respect toR
if and only if (RN P)L 2 (RN P)L (resp.(RNP’')L D
(RN P)L).

domain (ratherP’ may have a different correct behavior on
the competence domain @f). See Figure 1.

How do we know that our definition of relative correctness
is any good? Below are four properties that one would want a
definition of relative correctness to satisfy; we find in [Bht
our definition satisfies all of them.
Ordering Properties Relative correctness is reflexive
and transitive, but not antisymmetric (i.e. two candidate
programs could be equally correct, yet compute distinct
functions).
Relative correctness culminates in absolute correctness
An absolutely correct program is more-correct than any
candidate program. We write this property #:2 R <
(VP : P Jg P).
Enhanced Correctness Implies Higher Reliabilityy P’
is more-correct tha® with respect taR, then it is more
reliable thanP; but more-reliable is not equivalent to
more-correct”’ may be more reliable because its compe-
tence domain includes states that have higher probability
of occurrence than those of the competence domain of
P.
Relative Correctness and RefineméhibgramP’ refines
programP if and only if P’ is more-correct tha® with
respect taany specificationR. We write this property as:
P'JP& (VR:P' g P).
In order to contrast relative correctness with absolute
correctness, we present an example of a specification and ten
candidate programs, which we rank by relative correctness
as shown in Figure 2; correct programs are at the top
of the graph. We consider the specificatidh on space
S ={a,b,c,d,e}:
R = {(a’ a)7 (a’ b)7 (a’ C)7 (ba b)7 (ba C)7 (ba d)’ (07 C)’ (07 d)7 (Ca e)}’
and we consider the following candidate programs, along
with their competence domains with respectio

o Po={(a,d),(b,a)}. CDo = {}.
P ={(a, b)v( e)}. CDy = {a}.
e P, ={(a,d), (b, c)}. CDy = {b}
P3 - {( ,6), (Cv d)} CD3 - {C}
. P4 ={(a,b), (b,¢),(c,a)}. CDy = {a,b}.
={(a,d), (b,c),(c,d)}. CDs = {b, c}.
. ={(a,c), (b,e),(c,d)}. CDg = {a,c}.
. ={(a,a), (b,b),(c,c),(d,d)}. CD7 = {a,b,c}.
. Pg ={(a,b), (b,0), (c,d),(d,e)}. CDg = {a,b, c}.
e Py={(a,c),(b,d),(c,e),(d,a)}. CDyg = {a,b,c}

See Figure 2; program$», Ps, Py are (absolutely) correct
while programsP, Py, P, P3, Py, Ps, Ps are incorrect. Figure

5 shows a more concrete example of programs ordered by
relative correctness.

In [7] we generalize this definition to non-deterministic
programs, and discuss why this generalization may be the Faults and Fault Removals
key to scaling up. To contrast relative correctness with cor Any definition of a fault must imply a level of granularity

rectness (Definition 2), we may refer to the latteradisolute
correctnessFor deterministic programB and P/, P’ is more-
correct thanP if and only if the competence domain ¥’

at which we want to isolate faults. We use the tdaatureto
refer to any part of the source code at an appropriate level of
granularity, including non-contiguous parts.

is a superset of that of’; note this does not mean that Definition 4: Due to [19]. Given a specificatio® and a

P’ duplicates the correct behavior & on its competence

programP, afaultin programP is any featuref that admits



o/P'.
—

w N P O
w N P O
wd ™o
///NU
w N P O

w N O

Fig. 1. P’ Jr P, Deterministic Programs

Pr, Pg, Py

p

correct
programs

incorrect
programs
¥ "

Fig. 2. Ordering Candidate Programs by Relative Correstnes

po’ pl
a substitutef’ such that the progran®?’ obtained fromP by
replacing f with f’ is strictly more-correct tha®. A fault to 7
removalin P is a pair of featuregf, f/) such thatf is a
feature inP and programP’ obtained fromP by replacingf

with f’ is strictly more-correct tha®. P
This definition of a fault encompasses cases where the _ .
feature in question is non-contiguous, i.e. it may invowe t Fig. 4. Two One-site Faults

statements or for example two lexemes that are found in
different locations of the source code. We consider a pragr
P and a specificatiof® and we assume that we have identifie
two statements, safy and f; that admit substitutes, sg§ and

J1, such that the progran®?’ obtained fromP by replacing g strictly more-correct thap, andp/,, hence by transitivity
fo by f{ and fi by f] is strictly more-correct tharP with strictly more-correct thap).

respect toR. The question that we address is: do we have

two single-site faults f, and f;) or a single two-site fault 1ll. AN ALGORITHM FOR STEPWISEPROGRAM REPAIR

(f = (fo, f1))? The answer depends on whetlfgralone is a

fault, and whetherf; alone is a fault, whence the following ] .
definition. We consider a program?’ on spaceS and we are interested

Definition 5: Given a specificatior? and a progran, an {0 design an oracle that tests the execution/fon some
elementary faulin programP is a fault such that no part of initial state; the oracle takes the form of a binary prediaat
it is a fault. (s,s"), wheres is the initial state and’ is the final state. What
All single-site faults are elementary faults; multi-sieeufts  form this oracle takes depends on what property we want to
are elementary faults if and only if no subset of their eld€St about””. . . .
ments is a fault. Figures 3 and 4 (whefie represents the 1) Absolute Correctness with respectfio Given a speci-
transformationf, — f; and¢; represents the transformatiorfication /2 on spaces, the oracle for absolute correctness with
fi — f{) show the contrast between a single two-site faieSPect tok is denoted as)(s, s') and defined by:
and two on_e—site faults: in Figure 3 we need to apply both O(s,8') = (s € domR) = (s, ') € R).
transformations before the program becomes more-correct;
when we applyt, alone (respi#;), we obtainp; (resp.pj, We find in [20] that if a programP satisfies the condition
which is not strictly more-cottect thap it is only when we (s, P(s)) for all s in S then it is absolutely correct with
apply them both that we obtain a strictly more-correct paogr respect toR. In practice, since we cannot che€Ks, P(s))

). By contrast, Figure 4 illustrates a situation where each
dividual transformation raises the relative correcgnefthe
program (bothp{, andp] are strictly more-correct tham and

A. Oracle Design



for all s in S, we check it for a bounded size test d&ta — A message to the effect that no correctness enhance-
Hence we define the following predicate: ment of P with respect toR is possible, given the
, , existing patch generation capability.
Qr(P) = (Vs € T: Qfs, P(s))). Note that whereas other program repair methods require two

We find in [20] that if a programP’ satisfies this predicate test data sets (positive test data, negative test data),ove d
then it is absolutely correct with respect fQR. not _need 'Fhis information, because it_gan be inferre_d froen th

2) Relative Correctness over a prografwith respect to available input parameters: The positive test data is,adlgtu
a specificationR: Given a specification? on spaceS and (rncp)\ R, and the negative test data is. =), 12, whereC'D
a programP on S, the oracle for relative correctness ovefs the competence domain &f with respect toR.

programP with respect taR is denoted by(s, ') and defined Algorithm
by: This algorithm relies on the availability of a patch generat
which takes the forms of two functions:

This formula stems readily from the definition of relative o nextcandi dat e(base). Given a baseline prograbase,

w(s,s) = (Qs, P(s)) = Q(s, ).

correctness; a progra®’ is more-correct than program® this function returns candidate repairs base in a
with respect toR if and only if w(s, P'(s)) holds for alls in deterministic sequence; this can be a mutant generator,
S. In practice, since we cannot chegks, P’(s)) for all s in e.g., which takebase along with with some mutation
S, we check it for a bounded size data ¥etHence we define parameters/ options and generates, in sequence, all the
the following predicate: relevant mutants for the selected parameters.
« nor ecandi dat es( base) . Given a baseline prograbase,
wr(P') = (Vs € T :w(s, P'(s))). this boolean function returns true as long it has more

candidate repairs to offer, false otherwise.
This algorithm is generic in the sense that it can be composed
with any patch generator for which we can provide these two
functions.

3) Strict Relative Correctness over a prograi with
respect to a specificatioR: A program P’ is strictly more-
correctthan a progran® with respect to a specificatioR if
and only if P’ is more-correct thai®, and there exists at least
one elements in S such thatQ(s, P'(s)) A =£(s, P(s)). In  {prograntype base=P; prograntype candi date=P,
practice, since we cannot CheﬁKs, P’(s))/\ﬁQ(s, P(s)) for bool exhausted=fal se; bool enhanced=fal se;

. . ; while (! abscorT(candidate) && ! exhausted)
all s in S, we check it for a bounded size data §etHence  {while (norecandi dat es(base) &&

we define the following predicate: ! strictrel cor(candi date, base))
{11 no vi abl e candi dgte, but we have nore
UT(PI) = (wT(P') A (Hs cT: Q(S,P/(S)) A ﬁQ(s,P(s)))) candi dat e = next candi dat e( base);}

/1 if candidate is abs. correct done, else..
if (! abscorT(candidate))

{/1 analysis of exit condition

if strictrel corT(candi dat e, base)

B. Specification {/1 we let candidate be new base
. . . base = candi date; enhanced=true;
We use the oracles discussed above to design a generic } //also reset patch generation
program repair algorithm; before we present the algorithm, el {S?/ ¢ of di dat
. . . . we ran out orf candi aates
as discuss its specification. exhausted = true:}}}

« Inputs if (! exhausted)

. {cout <<’ Correct Program ' <<candi date<<endl;}
— A programP on S (whereS can be inferred from ¢ ge

the variable declarations dp). i f (enhanced)

_ {cout <<’ No correct program found. ’<<endl;
Test data set/’, a subset ofS. cout <<’ Most correct: '<<candi date<<endl ;}

— Specificationk on S, in the form of a binary C-like ¢ se
boolean functionR(s, sprime). {cout <<’ No correctness enhancement’ <<endl ;}}

— A specification of the domain af, in the form of  The following functions are a direct reflection of the for-
a unary C-like boolean functiodomnR(s). mulas presented in section IlI-A.

« Output Three possible outcomes, depending on pattleol abscor (candidate, inits)
in- {stype s; s=inits; candidate();// alters s
generation: . . return (! donR(inits) || R(inits, s)):}
— A programP’ that is absolutely correct with respect

to 7 R. Note that if P fails on some state 6f and P00l abscorT(candi date)

. . bool ab f I'l; ab f Il =t ;
P'is absolutely correct with respect {q i then P EO?; | a(tscio;] %ra abscortorali=true
is strictly more correct tha® (hence it is a repair {abscorforal l
of p) with respect toR. = abscorforall && abscor(candidate,t)};

— A program P’ that is strictly more-correct tha® return abscorforall:}

with respect toy\ R, though possibly still incorrect. bool rel cor (candi date, base, inits)



{stype s; s=inits; base();//alters s, not inits
bool abscorbase = (!donmR(inits)||R(inits,s))
s=inits; candidate(); //alters s, not inits

bool abscorcandi date=(!donR(inits)||R(inits,s))

return (! abscorbase || abscorcandidate);}

bool rel corT(candidate, base)

{bool relcorforall; relcorforall=true
forall (t inT)
{relcorforall = relcorforall &&

rel cor (candi dat e, base, t)}
return relcorforall;}

bool strict (candidate, base,inits)
{stype s; s=inits; base();//alters s, not inits
bool abscorbase = (!donmR(inits)||R(inits,s))
s=inits; candidate(); //alters s, not inits

bool abscorcandi date=(!donR(inits)||R(inits,s))

return (! abscorbase && abscorcandi date);}

bool strictT (candi date, base)
{bool strictforone; strictforone=false
forall (t inT)
{strictforone = strictforone
|| strict(candidate, base, t)}
return strictforone;}

bool strictrelcorT (candi date, base)
{return rel cor T(candi dat e, base)
&& strictT(candi date, base);}

IV. ILLUSTRATION
A. Experimental Setup

more-correct than the base; the organizational part ofithik
(management of the evolving graph) is done by hand, as it is
not yet fully automatic.

B. Experimental Observations

The resulting graph is shown in Figure 5; each iteration of
the outer loop generates a new layer of the graph. The bottom
of the graph is the faulty version dfcas, and the top is
the correct version, as found in the Siemens benchmark. Note
that even though we made eight modifications to the original
program, our algorithm made only seven fault removals; this
may be because the eighth modification does not change the
function of the program (it is not a fault) or because the test
dataT is not large enough to distinguish the original program
from the repaired program; in either case, the program at
the top of the graph is certified to be absolutely correct with
respect tor R.

Now, note that even though the program at the bottom of
the graph has seven faults, only four of them are visiblecésin
there are four outgoing arcs from the bottom). What happened
to the other three? They are masked, and can only be exposed
as the first four are removed. The lesson we can draw from this
observation: when we observe a failure of a program and we
resolve to repair it, we should not define success as remedial
to that particular failure, because the fault that causes$ th
failure may be masked by other faults; rather we should view

For the purposes of our experiment, we carry out patglhy enhancement in the relative correctness of the progsam a
generation by means of a mutation generator, specificafymeasure of success/ progress. In other words, we do not get
muJava [5, 16]. According to the specification given in SBTti 15 decide in what order a program exposes its faults; rather

[1I-B, we must provide the following parameters:

« A Program to Repair We choose thd cas program

we let the program reveal its faults in the order it deterrmine
We must acknowledge that what made our experiment look

taken from the Siemens benchmark, to which we appi successful is the combination of three conditions, which
eight modifications (faults) provided in the same benclgto not necessarily prevail in all instances: first, the mutan

mark [2, 10].

generator was parameterized in such a way as to perform

« Test Data We take the test data s@t (of size 1578) mutations that are of the same nature and the same scale

provided by the benchmark for this program.

« SpecificationFor the sake of this experiment, we use th
original fault-free version of cas as the specification;

this yields the following code foR:
bool R(s, sprine) // initial, final states
{tcas(); // modifies s, preserves sprinme

return (sprime==s);} // candidate = spec?
To run this experiment with non-deterministic specs
ifications, we are planning cases where the equali
(sprinme==s) is replaced by the weaker condition
(EQ(s, sprine)), for some equivalence relatiofX));

this is currently under way.

« Specification domairSince we take the correct version o

as the benchmark faults that were introduced; second, all
fhe faults that were introduced are single-site faults,chen

we were able to remove them by single mutations; third, we

assume the availability of boolean functions that capthee t
specificationR and its domain. The first condition pertains

to patch generation, and is a difficult condition to fulfill in
eneral, because it assumes that we know the nature/ scale of
e faults. The second condition pertains to patch valdati

and is relatively easy to fulfill: first because most faulte ar
single-site faults; and second, because we can run multiple

1mutations to cover the rare cases where they are not. For

t cas as specification, and since this program is defingustration, we run the same experiment described above on

for all states inT’, we letdomR(s) be true.
bool donR(s) {return true;}

the replace application of the Siemens benchmark, to which

we have inserted six modifications. After four iterationsuff

Though the algorithm, as written in section 11I-C, seeks tfault removals) we reach a program that is more-correct than
build a single path from the faulty version of a program tthe original, but not absolutely correct; when we deploylieu

a correct version (by successive fault removals), what weutation, we break through, generating two separate pnogra
execute for this experiment is a search for all the possiltleat are absolutely correct with respect#oR. So that we
paths; instead of the inner while loop of the algorithm (sect were able to remove five faults (four single-site faults and o
[11-C) we actually execute a for loop that covers all the nmiisa  double-site fault) by doing nothing more than double motati

of the current base and catalogs those mutants that artbystrid we were using only absolute correctness as the criterfon o



mé 49126036 61

\
A 43.60.45.61.12

/
/
//
/ \
// > \ 1
\ \
/ \ \
\ \\
\ y \
\ \ \
mE12604651 1260546

mé 50454951

/
/
//
MEBLS) gL 484 ‘ 6L ‘ 8 6L485L 4L ‘ 4126161
i 7y 1 P /
[\ 7 /Y / R /
\ /% 4
\ / . /
/ \ / S /
Rl '\Q ’
/ \ / J
7\ 7\ + " !
P \
A \ e
i T T T T T iR | ne0dsele
N, 7 / /
M \ | f / /
\ /1 /
AN F § !
/
/
/
/
/

Fig. 5. Stepwise Repair dfcas Faults

success, we would have to apply sixtuple mutations to aehiek’ through a repair operation. In this paper we derive the
the same result, an outrageously costly proposition. As fekeleton of an algorithm for program repair, which usesstri

requiring predicate®(s, s’) anddomR(s), we admit that this relative correctness oracles to perform patch validatonr

may limit the scope of our approach; but we also argue thapproach can be characterized by the following premises: it
some form of specification is mandated by other methods rtelies on formal definitions of correctness, relative cctimess,
generate the required positive test data and the negasve #nd strict relative correctness; it derives test oraclesnfr
these definitions; it defines success/ progress as any strict
enhancement of relative correctness, rather the remediati

of a specific failure; it controls combinatorial divergenoe
removing faults in sequence rather than simultaneously.

data; all we are doing is making the requirement i, s)
What would be more interesting, perhaps, is to explore how

explicit.
V. CONCLUSION

A. Summary and Prospects

that absolute correctness plays for program construdtiathie candidates, but rather to generate repair candidates that a
same way that absolute correctness is the criterion by whigtore-correct by construction. In the same way that coressn

we judge the derivation of a program from a specificatioifjeas were used by researchers such as Dijkstra [9], Gis [1

relative correctness ought to be the criterion by which wedehner [13], Morgan [23] and others as a basis for correct-

Relative correctness plays for program repair the same r@fe can use relative correctness, not to test existing repair
judge the transformation of a program into a program by-design programming, we can imagine ways to use relative



correctness ideas to generate more-correct-by-desigmano REFERENCES
repalrs. This is Clearly a I_ong-Ferm research gpal, but _baﬁt [1] Martinez M. and Monperrus M. Mining software repair méxiéor
promises great returns, since it has the potential to guadiehp reasoning on the search space of automated program fiingirical

generation in addition to patch validation. Software Engineering2013. . »
[2] Benchmark. Siemens suite. Technical report, Georgslitlie of
Technology, January 2007.
[3] Kim D., Nam J., Song J., and Kim S. Automatic patch generat
learned from human-written patches. IBSE 2013 pages 802-811,
B. Related Work 2013.

[4] Vidro‘ha‘Debroy and W. Eric Wong. Com_bining mutation arallf
We argue that our approach to patch validation, which is localization for automated program debuggidgurnal of Systems and

; Software 90:45-60, 2013.
based on the concept of relative correctness, addresses SO[g]1 Marcio Eduardo Delamaro, Jose Carlos Maldonado, andi Aur

shortcomings in existing program repair technology, immter Marcelo Rizzo Vincenzi. Proteum /im 2.0: An integrated ntiota
of precision, recall, and efficiency [1, 3, 4,6, 14,15,18,22 testing environment. In W. Eric Wong, edito¥utation Testing for
25] the New Centuryvolume 24, pages 91-101. Springer Verlag, 2001.

’ [6] F. DeMarco, J. Xuan, D.L. Berra, and M. Monperrus. Autdima

1) Loss of RecaIIGenProg [11, 15], for example, generates repair (()jf buggc):/sif conditiongoarslg rg:)ssing preconditionshwémt. In
. K e . Proceedings, TVAvages 30-39, 2014.
candidate repairs by combining a set of elementary MUBBLIOR 3 " pDesharnais, N. Diallo, W. Ghardallou, M. F. Frias, Aoda, and

and submitting each mutant to a set of positive test datacfwhi ~ A. Mmili. Relational mathematics for relative correctness. RAMICS,

the original program passes, and we want to preserve) and a §015 volume 9348 OL'\IICS pages 191-208, Braga, Portugal, Septem-
: . . - er 2015. Springer Verlag.
set of negative test data (WhICh the or|g|nal program fa”S[S] Nafi Diallo, Wided Ghardallou, and Ali Mili. Correctnesand relative

and we want candidates to pass). This approach presents two correctness. IProceedings, 37th International Conference on Software

impediments for good recall: First, this condition is suéfitt o] Ef:/%ing?lzirlgy '\KEDR_ tr_’clfl;kFirePée, Italy, May F30—%2 20Hlf?|- 1676
: . WL DIjKstra. ISCIpline of ProgrammingFrentice Rall, .
for relative correctness but unnecessary. A candidateranog [10] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermehp@ting a

may fail on the positive test data and still be more-correct = controlled experimentation with testing techniques: Afnaistructure and
than the original: because specifications are not necssari its potential impactEmpirical Software Engineering: An International

o e : . Journal 10(4):405-435, 2007.
deterministic, correct behavior is not necessarily unidiee 11] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Gapphayeneric

Figure 1. Second, a candidate progr&mmay also fail on the method for automated software repaiEEE Transactions on Software
negative test data and still be more-correct than the aigin _ Engineering 31(1), 2012.

. ; [12] David Gries.The Science of Programmin@pringer Verlag, 1981.
program/; the competence domain &f may be a superset of [13] Eric C.R. Hehner.A Practical Theory of ProgrammingPrentice Hall,

that of P, yet still does not overlap the negative test data. The ™ 1992.
loss of recall means that GenProg could very well generdié] Claire LeGoues, Stephanie Forrest, and Westley Weim&urrent

. . . . challenges in automatic software repairSoftware Quality Journal
valid program repairs, but fail to recognize them as such. 21(3)-421-443, 2013,

2) Loss of Precision:GenProg selects candidate repairg>] Claire LeGoues, M. Dewey Vogt, S. Forrest, and W. Weimef
systematic study of automated program repair: Fixing 55 afut05

by ‘maximizing afitness functionwhich is computed as the /55 tor $8 each. IProceedings, ICSE 201pages 3-13, 2012.
weighted sum of all the test data on which the program rur$s] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. Mujava : Amomated

Weights are assigned to test data according to their prepon- class mutation systemJournal of Software Testing, Verification and
Reliability, 15(2):97-133, June 2005.

derance m_ some usage pattern, so thf'ﬂ t.h_e fitness funCtIOﬂ_ﬁ Zohar Manna.A Mathematical Theory of ComputatiotMcGraw-Hill,
an approximation of the program’s reliability. But we see in = 1974.

section 1I-B that relative correctness logically implidsyt is [18] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury.ngdlix:
Scalable multiline program patch synthesis via symbolialysis. In

not equivalent to, enhanced reliability. So that maxingzihe Proceedings, ICSE 201@ustin, TX, May 2016.
fitness function is a necessary condition, but not a sufficiemo] A. Mili, M. Frias, and A. Jaoua. On faults and faulty pregs. In
condition, of relative correctness. P. Hoefner, P. Jipsen, W. Kahl, and M. E. Mueller, editétgceedings,

o ] ] o RAMICS 2014volume 8428 ofLNCS pages 191-207, 2014.
3) Inefficiency: We recognize two sources of inefficiency[20] Ali Mili and Fairouz Tchier.Software Testing: Operations and Concepts

in current practice of program repair. First, as we disculssg John Wiley and Sons, 2015. _
. IV-B. fault t K h other: that 2]‘1] Harlan D. Mills, Victor R. Basili, John D. Gannon, anddRiR. Hamlet.
section IV-B, taults are prone to mask each other; so that'l Structured Programming: A Mathematical Approachllyn and Bacon,

we define the success of a repair operation as the remediation Boston, Ma, 1986.

of a specific failure caused by a specific fault, and that fadf] Martin Monperrus. A critical review of patch generatiteamed from
. ked b h h find bi . human written patches: Essay on the problem statement abgagéen
IS maske y others, we may have to find a combination of automatic software repair. IRroceedings, ICSE 2014yderabad,

of patches that fix all the faults involved in this situation India, 2014.

before the failing behavior is corrected. A more efficierfg3] Carroll C. Morgan.Programming from Specifications, Second Edition
. . . . International Series in Computer Sciences. Prentice Hatdon, UK,

approach may be to define success as an increase in relative 1ggg-

correctness, and accept any patch that fulfills this cdteri [24] Hoang Duong Thien Nguyen, DaWei Qi, Abhik Roychoudhuand

until the targeted failure is remedied. Second, whenewey th ~ Satish Chandra. Semfix: Program repair via semantic asalysn

. .. . . .. Proceedings, ICSEpages 772-781, 2013.

fail to distinguish between a single multi-site fault andesal [25] Zhchao Qi, Fan Long, Sara Achour, and Martin Rinard. Avalgsis

single-site faults, program repair methods may be pursuing of patch plausibility and correctness for generate-aridiat®e patch

unnecessary and costly multiple patches where successive generation systems. [Rroceedings, ISSTA 2018altimore, MD, July

single patches would have been sufficient.



