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Abstract

Traditionally, invariant assertions are used to verify the partial correctness of while loops with
respect to pre/post specifications. In this paper we discuss a related but distinct concept, namely
invariant relations, and show how invariant relations are a more potent tool in the analysis of
while loops: whereas invariant assertions can only be used to prove partial correctness, invariant
relations can be used to prove total correctness; also, whereas invariant assertions can only be
used to prove correctness, invariant relations can be used to prove correctness and can also
be used to prove incorrectness; finally, where traditional studies of loop termination equate
termination with iterating a finit number of times, we broaden the definition of termination to
also capture the condition that each individual iteration proceeds without raising an exception.
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1 Introduction: Conclusive Proofs of Correctness

Ever since their introduction by Hoare in 1969 [19], invariant assertions have played a central
role in the analysis of while loop, most notably in the verification of partial correctness with
respect to pre/post specifications. Variant functions were subsequently introduced to characterize
termination, thereby complementing the analysis afforded by invariant assertions. In this paper
we explore the use of an alternative concept, invariant relations (due to [32]) to verify the total
correctness of while loops with respect to relational specifications.
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Invariant relations offer a number of theoretical and practical advantages with respect to in-
variant assertions, most notably:

e Total Correctness vs Partial Correctness. Whereas invariant assertions are used to prove
partial correctness and variant functions are used to prove termination, invariant relations
can be used to prove partial correctness and termination; in relational terms, the analysis of
termination amounts to characterizing the domain of the loop function, whereas the analysis
of partial correctness amounts to characterizing the input/ output mapping defined by the
loop.

e Broader Definition of Termination. Whereas the analysis of termination using variant
functions equates loop termination with having a finite number of iterations, our analysis of
termination includes not only the condition that the number of iterations is finite, but also the
condition that each individual iteration terminates normally, without causing an exception
(such as division by zero, array reference out of bounds, etc).

e Proving Correctness or Incorrectness. Whereas invariant assertions may be used to
prove the (partial) correctness of a loop but may not be used to prove its incorrectness,
invariant relations may be used to prove either. Indeed, when one attempts to prove the
correctness of a while loop using an invariant assertion, and the proof fails, one cannot deter-
mine whether the proof failed because the loop is incorrect or because the invariant assertion
is inadequate. By contrast, invariant relations enable us to positively rule on correctness (if
they subsume the candidate specification) or on incorrectness (if they are incompatible with
the candidate specification).

Furthermore, the distinction between invariant assertions and invariant relations can be character-
ized by the following premises:

e Context Freedom. Whereas invariant assertions depend on the loop and also on its context
(pre/post conditions), invariant relations are intrinsic to the loop, hence remain unchanged
regardless of where the loop is used.

e Subsumption. Whereas any invariant assertion can be mapped onto an invariant relation
and any invariant relation can be mapped to an invariant assertion, invariant relations are
more general than invariant assertions in the following sense: all invariant assertions stem
from invariant relations, but the converse is not true (only a small class of invariant relations
stem from invariant assertions).

Invariant relations were introduced in [32]; in [33] we analyze the relationships between invariant
assertions, invariant functions and invariant relations; in [15] we discuss how invariant relations can
be used to answer a wide range of questions about a loop (computing its invariant assertions, its
weakest preconditions, its strongest postconditions, its termination condition, its function, etc), in
[23] we discuss scaling up of our invariant relation-based analysis, and in [24] we compare the per-
formance of our anallysis tool against other tools (that generate invariant assertions or termination
conditions).
In this paper we use the background presented herewith to achieve two modest goals:

e Show how invariant relations can be used to capture loop termination in a way that reflects
not only the condition that the number of iterations is finite, but also the condition that each
individual iteration executes without raising an exception.



e Show how invariant relations can be used to determine whether a loop is correct, whether it is
incorrect, or whether the invariant relations that we have derived for the loop give insufficient
information (relative to the specification) to make a decision.

This paper is an extension of [30], in which we had shown how invariant relations can be used to
support a wide range of queries about the functional attributes of the loop, most notably: they can
be used to compute or approximate the function of the loop; to compute the weakest precondition
of the loop, for a given postcondition; to compute or approximate the strongest postcondition of the
loop, for a given precondition; to compute an invariant assertion of the loop, for a given precondition;
to compute or approximate the termination condition of the loop; to generate a necessary condition
of correctness of the loop; and to generate a sufficient condition of correctness of the loop. In this
paper we consider the last three uses of invariant relations, and we combine them to derive an
integrated algorithm that takes a loop and a candidate specification, and determines, by generating
a succession of invariant relations, whether the loop is correct with respect to the specification.
Our algorithm is designed in such a way that we can rule on correctness (if the invariant relations
subsume the candidate specification) or incorrectness (if the invariant relations are incompatible
with the candidate specification) without necessarily analyzing all the loop’s functional details.

In section 2 we briefly introduce some relational mathematics, which we use in section 3 to
introduce invariant relations as well as a relational form of invariant assertions. In section 4 we
discuss how invariant relations can be used to compute the termination condition of a while loop,
and in section 5 we discuss propositions that give (respectively) a necessary condition of correctness,
and a sufficient condition of correctness of a loop with respect to a relational specification. In section
6 we use the results of the previous three sections to derive an algorithm that analyzes while loops
to determine their correctness (or incorrectness) with respect to a given relational specification. We
conclude in section 8 with a discussion of our main findings, our research prospects, and related
work.

2 Relational Mathematics

2.1 Definitions and Notations

We consider a set S defined by the values of some program variables, say z and y; we denote
elements of S by s, and we note that s has the form s = (x,y). We denote the z-component and
(resp.) y-component of s by z(s) and y(s). For elements s and s’ of S, we may use x to refer to
x(s) and 2’ to refer to z(s"). We refer to S as the space of the program and to s € S as a state
of the program. A relation on S is a subset of the cartesian product S x S. Constant relations on
some set S include the universal relation, denoted by L, the identity relation, denoted by I, and
the empty relation, denoted by 0.

2.2 Operations on Relations

Because relations are sets, we apply set theoretic operations to them: union (U), intersection (N),
and complement (R). Operations on relations also include: The converse, denoted by R, and
defined by R = {(s,s')|(s",s) € R}. The product of relations R and R’ is the relation denoted
by Ro R’ (or RR') and defined by Ro R' = {(s,s)|3s" : (s,s") € RA(s",s") € R'}. The pre-

restriction (resp. post-restriction) of relation R to predicate ¢ is the relation {(s, s")[t(s)A(s,s’) € R}



(resp. {(s,5)|(s,s") € RAt(s')}). Given a predicate ¢, we denote by T the relation defined as
T = {(s,5)[t(s)}. The domain of relation R is defined as dom(R) = {s|3s' : (s,s’) € R}, and
the range of R (rng(R)) is the domain of k. We note that for a relation R, We apply the usual
conventions for operator precedence: unary operators are applied first, followed by product, then
intersection, then union.

2.3 Properties of Relations.

We say that R is deterministic (or that it is a function) if and only if RRC I , and we say that
R is total if and only if I C RR, or equivalently, RL = L. A wector V is a relation that satisfies
VL =V in set theoretic terms, a vector on set S has the form C x S, for some subset C' of S; we
use vectors as a relational representation of sets. A relation R is said to be reflezive if and only if
I C R, transitive if and only if RR C R and symmetric if and only if R = R. A relation that is
reflexive, symmetric and transitive is called an equivalence relation.

2.4 Refinement Lattice

In [1], we had introduced a refinement ordering between relational specifications, and explored its
lattice properties; in this section, we briefly present the main results of [1], which we need for our
subsequent discussions. The following definition introduces an ordering relation between relational
specifications.

Definition 1 Relation R on S is said to refine relation R’ on S if and only if RLNR'LN(RUR') =
R

We admit without proof that this is a partial ordering; we denote it by: R 3 R’ or ' C R. Among
the lattice-like properties of this ordering, we cite the following:

e Any two relations R and R’ have a greatest lower bound (a meet), denoted by RM R’, and
given by the following expression:

RMR =RLNRLN(RUR).
e Relations R and R’ have a least upper bound if and only if they satisfy the following condition,
which we call the consistency condition:
(RNR)L=RLNRL.
e Given two relations R and R’ that satisfy the consistency condition, their least upper bound

(referred to as their join) is denoted by R U R’ and given by the following expression:

RUR =RLNRURLNRURNR.

e Any two relations have a least upper bound (join) if and only if they have an upper bound.

e The refinement ordering has a universal lower bound, which is the empty relation, but has
no universal upper bound.

e Maximal elements of this refinement ordering are total deterministic relations.



Intuitively, the join of two relational specifications represents the functional requirements that they
represent in common, whereas the meet of two relational specifications represents the sum of the
functional requirements that each represents; this sum is defined only if the specifications do not
contradict each other (whence the consistency condition).

3 Invariant Relations

3.1 Loop Semantics

Given a program g on space S, we let the function of g be denoted by G and defined as the set of
pairs (s,s’) such that if g starts execution on state s then it terminates normally in state s’. From
this definition it stems that dom(G) is the set of states s such that if execution of g starts in state
s then it terminates (normally). As a convention, we represent programs by lower case letters and
their function by the same letter in upper case. Specifications on a space S may be represented by
relations on S; while programs are assumed to be deterministic, specifications may be arbitrarily
non-deterministic (associate more than one correct final state for a given initial state). The following
definition characterizes the correctness of a program with respect to a relational specification as a
match between the specification and the program function.

Definition 2 We consider a program g on space S, and a specification R on S. We say that g is
correct with respect to R if and only if G J R, where G 1is the function of g.

We consider while loops written in some C-like programming language, and we quote the fol-
lowing theorem, due to [32], which we use as the semantic definition of a while loop.

Theorem 1 (Mili et. al. 2009 [32]) We consider a while statement of the form w = while t {b}.
Then its function W is given by: R

W=(TnNnB)*NT,
where B is the function of b, and T is the vector defined by: {(s,s")|t(s)}.

The main difficulty of analyzing while loops is that we cannot, in general, compute the reflexive
transitive closure of (T'N B) for arbitrary values of T and B.

To illustrate our subsequent discussions, we use a simple while loop on natural variables n, f,
k: while (k!=n) {k=k+1; f=f*k;}.

3.2 Definitions

Intuitively, an invariant relation is a relation that contains all (but not necessarily only) the pairs
of states (s, s’) such that s’ can be derived from s by application of an arbitrary number (including
zero) of iterations of the (guarded) loop body. We define it formally as follows.

Definition 3 Given a while loop of the form w = while t {b} on space S, we say that relation
R is an invariant relation for w if and only if it is a reflexive and transitive superset of (T N B).

The interest of invariant relations is that they are approximations of (7' N B)*, the reflexive tran-
sitive closure of (7' N B); smaller invariant relations are better, because they represent tighter
approximations. The following proposition stems readily from the definition.



Proposition 1 Given a while loop of the form w =while t {b} on space S, we have the following
results:

1. The relation (T'N B)* is an invariant relation for w.

2. If R is an invariant relation for w, then (T'N B)* C R.

3. If Ry and Ry are invariant relations for w then so is Ry N Ry.
Proof. We readily prove these results in turn, below:

e Relation (T'N B)* is reflexive and transitive, by construction. It is a superset of (7' N B), by
definition.

e The reflexive transitive closure of (7T'N B) is the smallest superset of (T'N B) that is reflexive
and transitive; hence it is a subset of any reflexive transitive superset of (7'N B).

e The intersection of two reflexive transitive relations is reflexive and transitive; the intersection
of two supersets of (7'M B) is a superset of (7'N B).

qed

To illustrate this concept, we consider the loop of the running example, and we submit the
following relation:
_ nt Lt
R—{(S,S)H—H}.

This relation is clearly reflexive and transitive; we leave it to the interested reader to check that it is
a superset of (T'N B). Other invariant relations include R’ = {(s, s')|n’ = n}, and R" = {(s,¢')|k <
E'}.

Invariant relations are prone to be confused with invariant assertions, since they look similar
to them. To help the reader distinguish between them, we briefly present a relational definition of
the latter, and discuss some relevant comparative results. In keeping with our relational approach,
we represent invariant assertions by relations, more specifically by vectors.

Definition 4 A wvector A is said to be an invariant assertion for the while loop w: while t {b}
with respect to precondition ¢ and postcondition v if and only if it satisfies the following conditions:

e pC A
e AN(TNB)CA,
e ANT C 1.

We discuss below how invariant relations and invariant assertions maps to each other.



3.3 From Invariant Relations to Invariant Assertions

The following proposition, due to [15], elucidates how invariant relations can be used to generate
invariant assertions.

Proposition 2 Given an invariant relation R of the while loop w: while t {b}, the vector A=
R¢ is an invariant assertion with respect to precondition ¢ and postcondition v = RoNT.

As an illustration of this Proposition, we consider again the sample factorial program, and we

consider the invariant relation s P
/
R:{(S,S)H:H}.

If we take the precondition represented by the vector

6 ={(s.5)|f =1 Ak =0}

then, using this Proposition, we can compute the corresponding invariant assertion and postcondi-
tion constructively, as follows:

A=Ro={(s, L = 5y = {(s,9)1F = H1},

YV=R4NT =ANT ={(s,s)|f =k Ak=n}={(s,)|f =nl Ak =n}.

The interested reader may choose another (arbitrary) precondition ¢ and compute the correspond-
ing invariant assertion and postcondition.

Proposition 2 provides that any invariant relation can be used to generate an invariant asser-
tion, as the product of the inverse of the invariant relation by the (vector that represents the)
precondition. A more interesting question is: are all invariant assertions derived from invariant
relation? The answer is provided by the following proposition, due to [33].

Proposition 3 Given an invariant assertion A of a while loop w = while t {b} on space S, there
exists an invariant relation R and a vector P such that A = RP.

In [33], we give a constructive proof of this Proposition, where R = A U Aand P = A. This
Proposition unveils a structure that is shared by all invariant assertions, as the combination of a
loop-specific term (the invariant relation) with a context-dependent term (the precondition), and
may be used to gain some insights into the generation of invariant assertions [5,10, 11,13, 14, 20—
22,25-28, 31, 34, 39, 43].

3.4 From Invariant Assertions to Invariant Relations

The following Proposition, due to [33], shows how we can derive an invariant relation from an
invariant assertion.

Proposition 4 Given an invariant assertion A of w =while t {b}, the relation R = AU A is an
mvariant relation for w.



On the factorial example, given the following invariant assertion A = {(s,s')|f = k!}, we can
generate the invariant relation:

R={(s,s)|f =K'= f =K}.
Interestingly, this relation is a superset of the invariant relation we had identified earlier,

f /
/o INEA N
B= sl =
Hence the latter is a better (more useful) invariant relation than the former. As to the question of
whether any invariant relation can be derived from an invariant assertion, the answer is negative:
only invariant relations of the form A U A can; these can be written as {(s, s')|a(s) = a(s’)}, for
some unary predicate o on S.

The discussions of this and the previous subsection highlight in what sense we claim that

invariant relations are a more general concept than invariant assertions.

3.5 Generating Invariant Relations

The following Proposition (due to [15]) provides a constructive formula for an invariant relation,
which can be computed from the function of the loop body and the vector that represents the loop
condition.

Proposition 5 Let w be a while loop of the form while t { b} on space S. Then R = IUT(T'NB)
18 an tnvariant relation for w.

This invariant relation contains pairs of states (s, s’) such that either s’ = s (in case s and s’ are
separated by zero iterations) or s satisfies ¢ and s is in the range of (7'N B) (in case s and s’ are
separated by at least one iteration). We refer to this invariant relation as the elementary invariant
relation of the loop. The elementary invariant relation is the only invariant relation we get for
free: we build it constructively from the parameters of the loop. For all other invariant relations,
we have to analyze the source code in detail. As a divide-and-conquer discipline, we resolve to
structure the function of the loop body in such a way as to streamline the derivation of invariant
relations; because invariant relations are supersets of the loop function, it is judicious to structure
the function of the loop as an intersection of relations. Once the function of the loop body is written
as an intersection, say:
(TNB)=B1NByNBsgN..N By,

then any superset of By is a superset of (1T'N B), any superset of B1N By is a superset of ("N B), any
superset of By N By N Bs is a superset of (T'N B), etc. We maintain templates of loop body terms
(B;’s), along with their corresponding invariant relations, which we call recognizers; we distinguish
between 1-recognizers, whose template includes a single term of the intersection, 2-recognizers,
whose template includes two terms, and 3-recognizers, whose template includes three terms (we
could consider more than three terms, but we have not felt much need for it so far). Whenever
the formal template of a recognizer matches an actual term of the intersection (or combination of
terms), the corresponding invariant relation is instantiated with the proper variable substitutions,
producing an actual invariant relation. Figure 1 shows three examples of recognizers:

Our pattern matching algorithm matches all its 1-recognizers against individual terms of the
intersection, then all its 2-recognizers against pairs of terms, then all its 3-recognizers against



| ID | variables | constants | condition | loop body | invariant |

1R1 | : int; a: int>0; | true X = x+a; {(s,s")|x mod a = 2" mod a}.
2R1 | z,y: int | a,b: int true x=x+a; y=y+b; {(s,8")|ay — bz = ay’ — ba'}
2R2 | z,y: int | a: int>0; | x mod a=0 | x=x div a; y=a*y; | {(s,s')|ry = 2"y}

Figure 1: Sample Recognizers

triplets of terms. If the algorithm is able to connect all the terms of the intersection by means of
2-recognizers or 3-recognizers, then we normally have the necessary information to capture all the
functional details of the loop. If not, the algorithm identifies the terms that remain isolated, so
that the user can determine what recognizers may be missing from the database, and precluding a
complete analysis.

This process works well when the function of the loop body can be written as an intersection of
terms: a loop of arbitrary size and complexity can be analyzed by means of 1-, 2-, or 3-recognizers
provided we cover (with 1-recognizers) and connect (with 2-recognizers and 3-recognizers) all the
terms of the intersection. But we cannot always decide what form the function of the loop body
has: if the loop body has if-then-else statements, nested if-then-else statements, or sequences of
if-then-else statements, then the outermost structure of its function is a union, not an intersection';
we write it as

(TﬁB) =By UByUB3U...U Bg.

In that case, we deploy the pattern matching process discussed above for each term of the union;
this results in the union of relations, where each term of the union is reflexive, transitive and is a
superset of the corresponding term of (7N B); we write it as

R=Ri{URyUR3U..URy.

Relation R is a superset of (T'N B); in addition, it is reflexive, since it is the union of reflexive
relations. But we can not claim that it is transitive, because the union of transitive relations is
not necessarily transitive. We have written a Mathematica program that takes such a union, and
attempts to find the smallest (or a sufficiently small) transitive superset thereof, using the structure
of each R; as an intersection of transitive relations. The process of generation an invariant relation
from a union of invariant relations is prone to cause a loss of information (we may not find a
sufficiently small invariant relation); the merits and limitations of this approach are discussed in
[24], and compared to alternative approaches.

4 Computing Termination Conditions

Now that we know how to generate invariant relations of a loop, we discuss how to use invariant
relations to verify the (total) correctness of while loops with respect to a relational specification.
We proceed in two steps; first, we focus on computing termination conditions.

'If the loop body has loops, then we analyze the inner loops first to determine their function, as shown in [32],
and replace them by their closed form function before proceeding to analyze the outer loop.



4.1 A Necessary Condition of Termination

We consider a while loop w on space S, whose function we denote with W. In [32] we have a
proposition to the effect that we can, without loss of generality, restrict the space of the loop to
dom(W); in other words, if originally the domain of W is a proper subset of S, we may let S
be redefined as dom(W); we justify this claim in [32] by showing that all relevant states (initial,
intermediate, final states) of the execution of the loop fall within dom(W) (hence we have no reason
to look outside). This move affords us the advantage that W is a total function on (the newly
defined) S. From a theoretical standpoint, the totality of W is important, because in conjunction
with determinacy, it makes W a maximal element in the lattice of refinement (re: Section 2.4);
as such, W can be approximated using nothing but lower bounds [32]. This result means that in
practice, we compute the domain of W, redefine S as this domain, then apply the results of [32].
The question that arises then is: how do we compute the domain of W. The following Proposition,
due to [15], maps invariant relations into necessary conditions of termination.

Proposition 6 We consider a while loop w on space S, defined by w =while t {b}, and we let R
be an invariant relation of w. Then, WL C RT, where W 1is the function of w and T is the vector
defined by T = {(s, s")|t(s)}.

This proposition provides a necessary condition of termination for the loop, using an invariant
relation; any invariant relation yields a necessary condition of termination. Of course, in practice
we are interested in necessary conditions that are also sufficient conditions of termination. These can
be obtained by choosing invariant relations as small as possible. In practice, we proceed by applying
our recognizers, which generate successive invariant relations, and we take the intersection of these
invariant relations to which we apply Proposition 6. Two issues arise as we generate successive
invariant relations:

o Target tnvariant relations that are relevant to termination. Let R be the current invariant
relation (intersection of previously generated invariant relations) and let R; be the latest
invariant relation. If (RN R1)T = RT, then R; is not improving our estimate of the necessary
condition of termination. Ideally, we want to be able to recognize such invariant relations,
and exclude them from consideration.

e Recognize when we have identified enough invariant relations to ensure sufficiency. Proposi-
tion 6 ensures that the generated condition is a necessary condition of termination; to ensure
that it is also a sufficient condition of termination, we need to generate all the invariant
relations that pertain to termination.

In other words, we must endeavor to generate all the invariant relations that are relevant to ter-
mination (to ensure sufficiency), and nothing but the relevant invariant relations (for the sake of
efficiency and parsimony). We do not have an algorithmic solution to these two requirements,
but we are using heuristics, which we are in the process of codifying, organizing, and validating.
Examples of such heuristics include:

e Always include the elementary invariant relation, given in Proposition 5, as it characterizes
cases when the loop terminates without iterations, and the case when the loop terminates
after at least one iteration.

10



e Generate invariant relations that represent ordering relations (<, >) between values of all the
variables that are used in the loop condition; as such ordering relations may be key to the
termination condition.

As an illustrative example, we consider the factorial program introduced in section 3.1, and we apply
this proposition using the intersection of invariant relations R’ and R” introduced in section 3.2 (the
intersection of invariant relations is an invariant relation). We find: R = {(s,s")[n =n' Ak < k'}.
We compute the necessary condition of termination as follows:

WL
- {Proposition 6}

RT
= {substitutions, product}

{(s,8)|3" :n=n"Nk<E'"ANE"=n"}
= {substitutions, simplification}

{(s,)lk < n}.
Though we have no proof, we believe that in addition to being provably necessary, this condition
is sufficient to ensure termination. We redefine the space S as the set of natural variables n, f, k
such that £ < n. On the newly defined space, function W is vacuously total.

4.2 Avoiding Abort

Proposition 6 makes no distinction between whether we are modeling the condition that the number
of iterations is finite or the condition that no iteration causes an abort. That distinction stems
from the invariant relations that we choose in practice, or equivalently, from the recognizers that
we deploy to generate invariant relations. Considering the factorial example above, if we assume a
perfect arithmetic, then the only condition under which the loop might not terminate, is that the
number of iterations is not bound; this is reflected in the termination condition that was generated.
In this section we discuss what kind of invariant relation we need to generate to reflect the
additional condition that successive executions of the loop body terminate normally, without raising
exceptions. As a general rule we consider that programs abort when they apply a function to an
argument that is outside their domain. Hence as a condition of termination, we want to write:

Va : App(f,z) = = € dom(f),

where App(f,z) means that function f is applied to argument x. Once this condition is written,
the challenge is to generate predicates of the form App(f,x) for all applicable functions and all
applicable arguments throughout the program.

As an illustrative example, we consider the case where the function in question is an array
reference. Let a be an array of index range low..high and let ref(h) be the predicate: array a is
referenced at index h. Then the above formula can be rewritten as:

Vh:ref(h) = low < h < high.

This condition can be generated upon encountering the array declaration, and is included as part
of the characterization of the termination condition. What remains to be done is to identify the
index values that are indexed through the loop, and generate predicate ref() for them. By the
Modus Ponens rule, the condition low < h < high will be generated for those indices, and only

11



those. We propose to use invariant relations to characterize those indices in loops. For the sake of
readability, we illustrate our idea on a simple loop:

while (i!=0) {i=i-1; x=x+alk]; k=k+1;}.

Then, we write T" and B as follows:

T =A{(s,s")|i # 0}
B=A(s,s)|ref(k)yNi' =i—1AN2' =z +alk)] A\ =k+1ANd =a}.

Our challenge now is to characterize the indices of a that are referenced by the loop, using an
invariant relation (i.e. a reflexive transitive superset of (7'N B)). We propose the following relation

R={(s,8)|Vh : k <h <K = ref(h)}.

This relation is clearly reflexive since for k = £/, the premise of the implication is false. It is also
transitive since if ref(h) holds for all h between k and k' — 1 and between k' and k” — 1 then it
holds between k and k” — 1. Finally, it is a subset of T'N B since

TNB
= {substitution}
{(s,Ni ZONref(k)Ni' =i—1ANK =k+1AN2 =x+alk]Nd =a}
- {substitution, rewriting, simplification}
{(s,)I[Vh: k <h <k =ref(h)) Nk =k+1}
- {simplification}
{(s,8)Vh: k <h <K =ref(k)}
= {substitution}

R.

We consider this invariant relation, along with the elementary invariant relation proposed by Propo-
sition 5, take their intersection, then we apply Proposition 6, yielding the following necessary
condition of termination:

(1=0)V(i>1ANlow<k<high—i+1).

The reader may verify that this is indeed a necessary condition of abort-free termination; we believe
it is sufficient as well.

As a second illustrative example, we consider the following loop on integer variables i, z, and
y, where the risk of abort stems from a division by zero:

while (i!'=0) {i=i-1; x=x+1; y=y-y/x;}

We let predicate divby(z) be defined as: z is used as a divisor. Then we propose the following
generic law (which could be generated implicitly whenever a numeric variable is declared):

Va @ divby(z) = x # 0.

The challenge, now, is to characterize those values of = for which predicate divby holds, in the
course of a loop execution. To this effect, we begin by writing the parameters of the loop:

T = {(s,)li # 0}

B={(s,s)|divby(z + ) Ni' =i - 1A'=z + 1Ny =y— A5}
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In addition to the elementary invariant relation,
Ry=1UT(T'NB),
we propose the following invariant relations:
Ry ={(s,8)|Vh : 2 < h <2’ = divby(h)},
Ry = {(s,8)]i > 7'},
Ry ={(s,s)|x +i=2a'+1i}.

We take the intersection of these four relations, and apply Proposition 6; this yields the following
necessary condition of termination (which we have reason to believe is also sufficient),

(i=0V(i>1A(z<iVaz>0))).

In light of these two examples, we further present two more heuristics (for generating invariant
assertions that aim to produce a sufficient condition of termination):

e If a function f is applied to some variable = (or, more generally, some expression E), then
we must generate an invariant relation that characterizes all the values of x (E) on which
function f is applied.

e If a variable x is used in the loop condition and a variable y is used as an argument to a
function f that is prone to cause an abort (division by zero, array reference out of bound,
etc), then generate an invariant relation that links x and y (to produce the condition under
which the loop terminates before the abort-prone function is applied to an illegal argument).

So far we have assumed that we have perfect arithmetic, and have focused our attention on what
we refer to as abort-prone operations, such as array references out of bounds, divisions by zero,
and other similar operations, and have explored what form the corresponding invariant relations
take to model these aspects of termination. An extension of this work, which is currently under
investigation, is to abandon the hypothesis of perfect arithmetic, and to model arithmetic overflow
and underflow; this matter is currently under investigation.

There is a fairly rich literature dealing with proving loop termination, proving loop non-
termination, or characterizing necessary or sufficient conditions of termination [2-4,6-9,12, 16—
18,29, 34-37,40-42]. The vast majority of this work centers on the generation of ranking functions
of some sort, which tend to equate termination with having a provably finite number of iterations.
In this regard, our work is more general, as it also encompasses aborts as a possible cause of non-
termination. Another characteristic of existing research on termination is that it deals exclusively
with numeric programs, whereas our approach is not restricted to any application domain; whatever
we can model with recognizers (and we can subsequently reason about with Mathematica) can be
analyzed by our approach.

5 Conditions of Correctness

Once we have computed the termination condition of the loop, we redefine the space of the loop to
be the subset of S for which this condition holds, thereby making W vacuously total. Under the
hypothesis of totality, we present a necessary condition of correctness and a sufficient condition of
correctness, which we use in section 6 to outline an algorithm that analyzes the correctness of while
loops.
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5.1 Necessary Condition

The following proposition provides a necessary condition of correctness of a loop with respect to a
relational specification.

Proposition 7 Let w be a while loop of the form w = while t {b} that terminates for all states
in S, let R be an invariant relation for w, and let V be a specification on S. If w is correct with

respect to V' then
(VAR)T =VL.

Proof. By hypothesis, and by definition of correctness, we know that W (the function of the loop)
refines V. On the other hand, because ]i is an invariant relatii)n for w, we know by virtue of a
theorem due to [32], that W refines RN T. Hence V and RN T have an upper bound (viz. W);
according to a proposition due to [1] (and cited in section 2.4), whenever two relations have an
upper bound, they have a least upper bound. Hence, according to a theorem due to [1] (and cited
in section 2.4), they satisfy the consistency condition, i.e.

(VARNT)L = VLN (RNT)L.

By virtue of a vector identity, the left hand side can be simplified into: (V' N R)T. On the other
hand, if we consider the second term of the right hand side, we can simplify it as follows:

(RNT)L
D {(T'n B)* is the smallest invariant relation}
(TNB)*NT)L
= {semantic definition: Theorem 1}
WL
= {totality of W}
L.

From (RNT)L O L we infer (RNT)L = L, whence the right hand side become C'L and the
condition becomes: VLN (RNT)L = VL. qed

Even though this is a necessary condition of correctness, we propose to use it (more precisely:
its negation) as a sufficient condition of incorrectness; this a similar goal to [38], though we use a
different approach. For illustration, we consider the factorial program, and the following specifica-
tion:

V={(s,s")|f =n!An’ =n}.

We let R be the following invariant relation for this loop:

R= {(Svsl) % :%}7

and we check the condition of Proposition 8:
(RNW)T
= {substitutions, product}
{(s,8)|3s" k" =nAf'=nlAn"=nA % = % NE"=n"}
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= {substitutions, simplifications}
{(s,8)|f =K'}

=+ {by inspection}
L

{since V is total}
VL.

Hence the while loop is not correct with respect to V. We do not need to know what function
w computes: knowing that R is an invariant relation for w is sufficient to exclude the possibility
that w could be correct with respect to V.

5.2 Sufficient Condition

The following proposition uses invariant relations to generate a sufficient condition of correctness
of the loop with respect to a relational specification.

Proposition 8 Given a while loop w of the form while t {b} that terminates for all states in its
space S, and given a specification U on S, if an invariant relation R of w satisfies the condition

RTNULN(UURNT)=U
then w is correct with respect to U.

Proof. By virtue of a vector identity (for a relation R and a vector v, ((R Nv)L = Rw), the
hypothesis of the Proposition can be written as:

(RNT)LAULN(UURNT) = U.
By virtue of the definition of refinement, this can be rewritten as:
RNT JU.
Because R is an invariant relation for w, we know (by virtue of a theorem due to [32]) that
W3 RNT.

By transitivity of the refinement, we infer that W refines U, hence w is correct with respect to U.
qed

We illustrate this proposition on the sample factorial program by taking the following candidate
specification:

U={(s,s)|f =kIAf =nl}.

To prove w correct with respect to U, we use the invariant relation R = {(s, s’ )|% = kf—,/,}, and we
apply Proposition 8: R

RTNULN(UURNT)
= {substitutions, simplifications}

Ln{(s,s)|f =k}IN
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diagnosistype = {correct, incorrect, undecided};
CorrectnessVerification (S, w, X) // space, loop, specification

{

// declarations

relation R, cumulR; // invariant, cumulative invariant
diagnosistype diagnosis; // correctness outcome

// initializations

S = S and termination(w); // restricting S to dom(w)

cumulR = L; // universal relation

diagnosis = undecided; // default option

// default option

while more-inv-relations(w)
{
R = get-inv-relation(w); // new invariant relation
cumulR = cumulR inter R; // cumulative invariant relation

if not necessary(R,X) // the necessary condition is not met
{diagnosis = incorrect;}
else

if sufficient(cumulR,X)// the sufficient condition is met
{diagnosis = correct;}
}

return diagnosis;

3

{(s,)f = RN =B U{(s,8)fy = fy AR =n})
= {factoring, simplification}

{(s, "NIf =KINf=n"1}U{(s,s)|f =KINf =nINK =n"}
= {set theory, substitution}

U.
The same invariant relation, R = {(s, s’ )|% = ,{—/l,}, which was sufficient to rule out the correctness of
w with respect to V' (above), is sufficient to ensure the correctness of w with respect to specification
U. In both cases, we did not need to compute the function of the loop, nor to generate all its
invariant relations.

6 An Algorithm for Verifying Loops

Using the three propositions above, we propose the following algorithm for assessing the correctness
of a loop w with respect to a relational specification. This algorithm depends on our ability to gen-
erate successive invariant relations, which we represent by the operation: get-inv-relation(w);
we assume available a boolean function more-inv-relations(w) that returns false when we have
exhausted all the invariant relations we can extract for w (in practice: when we have deployed all
the recognizers available to us), true otherwise. We write it in pseudo-code, using relations as a
data type (to represent invariant relations), and using predicates termination, sufficient, and
necessary, to represent the conditions of Propositions 6, 8, and 7, respectively.

This algorithm is automated but is not yet fully integrated, and is currently under develop-
ment/ evolution. Note that while functions necessary(R,X) and sufficient (cumulR,X) return
a boolean value, function termination(w) returns a boolean expression, which is subsequently
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used to redefine space S. Note also, that function termination(w) involves its own loop calling
invariant relations; we are currently refining our characterization of which invariant relations may
be useful to generate termination conditions, and which may not. We envision defining two distinct
(but likely overlapping) databases of recognizers: one that we deploy for termination and one that
we deploy for correctness; they may have significant overlap (many invariant relations may be used
for both).

7 Illustration

As further illustration of the proposed approach, we consider the following loop:

#include <iostream> using namespace std;
const int cN=...; int i, j, fb, nc, np; int main () {
while (j!=cN) {j=j+i; nc=fb; fb=np+nc; np=nc; i=i+l; j=j-i;}}

and the following relational specification (where F' represents the Fibonacci function):
V={(s,8)]j=cNAs =stU{(s,8)]j >cNAfb =F(G+2—cN)A

nd =F(G+1—cN)Anp =F(j+1—cN)ANi'=i+j—cNAj =cN}.

Application of Proposition 6 with appropriate invariant relations yields the following termination
condition: j > ¢N, which we consider as part of the space definition; with this new space, we
can now apply Propositions 7 and 8. To check whether this loop is correct with respect to V', we
consider the following invariant relation of the loop:

R={(s,8)|fb/ = fox F(i' —i+1) +npx F(i' —i)},

and we apply Proposition 7. To this effect, we observe readily that U is total, hence UL = L, and
we compute (RN V)T:
(RNV)T
= {substitutions, distributivity}
{(s,)[J=cNANs=sNft/ =fox F(i' —i+1)+npx F(i' —i)A
J'=eN}oLU{(s,s)|j>cNANfY =fox F(i' —i+1)+npx F(i' —1)
ANV =F(G+2—cN)And =F(+1—cN)Anp =F(j+1—cN)A
i'"=i+j—cNANj=cN}olL
= {simplifications}
{(s,)][j=cNAs =s}oL
U{(s,8)|j >cNAF(j+2—¢cN)=fbx F(j+1—¢cN)+npx F(j —cN)
ANV =F(G+2—cN)And =F(G+1—cN)Anp =F(j+1—cN)A
i'=i+j—cNANj =cN}oL
= {relation product}
{(s,)]j = eN}
U{(s,8)|j >cNANF(j+2—cN)=fbx F(j+1—¢cN)+npx F(j —cN)}
Because this relation is not L, we can conclude that the loop w is not correct with respect to V'; we
do not need to know what function this loop computes, it suffices that we find an invariant relation
that is incompatible with V.
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As an illustration of the sufficient condition of correctness, we consider the same program as
the previous example, and the following specification:

U={(s,8)j>cNAnp=1Afo=1ANf0/ =F(j+2—cN)And = F(j+1—cN)}.

In order to prove that w is correct with respect to this specification, we submit the following
invariant relation:

R={(s,8)|ft' =npx F(j —cN)+ fbx F(j +1—¢N)

And =npx F(j —1—cN)+ fbx F(j —cN)}.
To check the condition of Proposition 8, we proceed as follows:
RTNULN(UURNT)
= {substitutions}
{(s,8")|f =npx F(j —cN)+ fox F(j+1—cN)A
nd =npx F(j—1—cN)+ fbx F(j—cN)ANj =cN}olL
N{(s, )i >cNAnp=1Afo=1Afb/ = F(j+2—cN)A
nd =F(G+1—cN)}oLN(UURNT)
= {simplifications} R
{(5,8)]j>cNAnp=1Afob=1}N(UURNT)
= {substitutions, distributivity}
{(8,)|[J>cNAnp=1ANfb=1ANf/ =F(j+2—cN)And =F(j+1—¢cN)}
U{(s,)|j >cNAnp=1ANfo=1Afb/ =npx F(j —cN)+
foOXF(G+1—cN)And =npXx F(j—1—¢N)+ fbx F(j —cN)}
= {simplification, Fibonacci property}
{(8,)|J>cNAnp=1ANfb=1ANf =F(j+2—cN)And =F(j+1—¢cN)}
U{(s,8)]j >cNAnp=1Afo=1Afbl =F(j+2—cN)A
nd = F(j+1—cN)}
= {simplification}
{(8,)|[J>cNAnp=1ANfb=1ANf =F(j+2—cN)And =F(j+1—¢cN)}
= {substitution}
U.
Hence w is correct with respect to U.
Interested readers may view the video at http://web.njit.edu/ mili/cst.exe, where the stepwise
analysis of this loop is carried out, one invariant relation at a time.

8 Conclusion

8.1 Summary

In this paper, we have explored the use of invariant relations as a means to establish the correctness
of a while loop with respect to a relational specification. Our invariant relation-based approach
proceeds by computing the termination condition of the loop, then redefining the space of the
loop in such a way as to include only those elements for which the loop terminates. Then we
generate successive invariant relations of the loop, and use them to check a sufficient condition and
a necessary condition of correctness: as soon as we find enough invariant relations to subsume the
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candidate the specification or to contradict it, we can terminate conclusively, with the diagnosis that
(respectively) the loop is correct or incorrect. If we run out of invariant relations before we reach
one or the other of these conclusions, then our system gives us an indication of what recognizers
are missing (causing the lack of invariant relations); if we build the missing recognizers and run it
again, we may conclude with a decisive diagnosis.

8.2

Assessment

Because the analysis of while loops is dominated by the use of invariant assertions, we compare our
approach to common approaches based on invariant assertions.

8.3

As we discussed in the introduction, our original motivation is to remedy the situation where
the proof of a while loop using invariant assertions fails, and we do not know whether the
proof failed because the loop is incorrect or because the invariant assertion is inadequate.

Even assuming that we have determined somehow that the proof failed due to the inadequacy
of the invariant assertion, it is not always straightforward to determine whether the invariant
assertion needs to be strengthened or weakened. By contrast, with invariant relations we
have only one way to go: we must find smaller and smaller (cumulative) invariant relations,
thereby capturing increasingly detailed functional information.

Whereas other researchers use invariant assertions to prove partial correctness and variant
functions to prove termination, we use invariant relations to prove termination (or to compute
termination conditions) and to prove correctness.

Whereas other researchers equate termination with having a finite number of iteration, we
make no such an assumption, and capture the condition that the number of iterations is finite
as well as the condition that each individual iteration terminates normally. In appendix A,
we show a non trivial program for which we compute a termination condition that reflects
both important aspects of termination: that the number of iterations is finite and that no
iteration causes an array reference out of bounds.

Prospects

We envision three venues for future research:

Change the current program that generates invariant relations by syntactic matching to make
it proceed by semantic matching instead. This allows us to generate more general recognizers,
and to broaden the scope of the tool for a given size of the recognizer database.

Build a domain-specific database of recognizers, and use it to analyze software applications
in that domain.

Refine the characterization of invariant relations that may be useful for termination, and
expand the study of termination by lifting the hypothesis of perfect arithmetic.

This research is currently under way.
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A Computing a Termination Condition

We consider the following program:

#include<iostream>
#include<math.h>
using namespace std;
float taylor(int x, int p)
{int fact=1;
if(p!=0 && p!=1) {for(int k=p;k>1;k--) fact=fact*k;}
return pow(x,p)/fact;}
int main()
{const int N; int i,j,k,x; float y,z; float a[N]; float b[N];
while (j!=0)
{ i=i+1; k=k-i-j; j=j+i-8; ali-1l=taylor(x,i-1);
y=y+ali-1]; k=k+j+7; z=z+b[k+1]; j=j+1-i; }}

The termination condition for this loop, as computed by Mathematica using the formula of
Proposition 6, is the following, where low and high are the indices of arrays a and b. This formula
begins by saying that the loop terminates if j = 0 (trivially), or if j is a multiple of 7, then a number
of conditions follow, that check on the various configurations of the array bounds and array indices,
making sure that no array references are out of bound.

(j=0) Vv (C[1]€ Integers A C[1]> 1 A j=7TxC[1] A (high=low A i=low A k=low A j=T7) V (high
> low+1 A ((i=low A low< k< high A 7< j< 7T+7x k-Txlow) V (low+1< i < high A ((low-1< k<
high-i+low A 0<j< 74+7xk-Txlow)V (high+low-i< k< high A 0<j< 7+7xhigh-7xi))))))
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