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Abstract 

The concept of software architecture emerged in the eighties as an abstraction of all the design 

decisions pertaining to broad system structure, component coordination, system deployment, system 

operation, etc.  As such, software architecture deals less with functional attributes than with 

operational attributes of a software system.  So much so that a sound discipline of software 

architecture consists in identifying and prioritizing important non functional attributes that we want to 

optimize in the software system, and using them as a guide in making architectural decisions.  In light 

of this situation, we find it paradoxical that no architectural description language in use nowadays has 

any means to automatically analyze the non functional attributes of software architectures.  In this 

paper, we present a modified version of ACME, and present a compiler of this language that allows us 

to analyze and reason about non functional attributes of software systems. 

 

1.  Introduction:  Compiling Architectures 

The concept of software architecture has emerged in the eighties as an abstraction of the design decisions 

that precede functional design, and pertain to such aspects as broad system structure, system topology in 

terms of components and connectors, coordination between system components, system deployment, 

system operation, etc [Garlan and Shaw, 1996; Bass et al, 2003; Clements et al, 2010].  This concept has 

gained further traction through the nineties and the first decade of the millennium, by virtue of its role in 

many modern software engineering paradigms, such as domain engineering, product line engineering, 

component based software engineering, and COTS based software development [Frakes and Kang, 2007; 

Kang et al, 2004; Mili et al, 2002].  Whereas functional design and programming determine the functional 

attributes of a software product, the architecture of a software product determines its non-functional 

attributes, i.e. properties such as:  response time, throughput, reliability, buffer capacity, availability, 

security, safety, etc; we refer to these as quality attributes of the software product. 

A number of architecture description languages (ADL’s) have emerged in the past two decades, including 

ACME (CMU), Wright (CMU), Rapide (Stanford University), SADL (SRI), Aesop (CMU), MetaH 

(Honeywell),  C2 (UC Irvine), Lileanna (IBM/ Loral), PADL (Urbino), Unicon (CMU).  Even though 

many of these languages embody state of the art ideas about software architectures, and despite the 

importance of non functional attributes in the characterization of software architectures, to the best of our 

knowledge none of these languages  offer automated support for analyzing quality attributes of software 

architectures.  In this paper we propose to fill this gap by proposing an ADL which is a modified version 

of ACME, and building a compiler for this language, with the following characteristics: 



• The language is based on ACME’s architecture ontology, in that it represents architectures in 

terms of components, connectors, ports and roles. 

• It uses ACME’s Property construct to represent the quality attributes of components and 

connectors; but while ACME considers the data entered under Property as a mere comment, 

which it does not analyze, we give it a precise syntax and use it in our analysis. 

• Whereas ACME lists the ports of a component and the roles of a connector, and does not specify 

any relation between the ports of a component or the roles of a connector, we introduce special 

purpose constructs that specify these relations, and use them in our analysis. 

• Whereas programming language compilers generate executable code, that represents the 

functional attributes of a software product, our compiler generates equations that characterize the 

non-functional attributes of the product.  These equations are written as Mathematica (© Wolfram 

Research) equations.   

We use Mathematica to analyze and solve these equations.  Among the questions that we envision  to 

address/ answer, we cite the following: 

• Given a set of values for the quality attributes of components and connectors, what are the values 

of the quality attributes of the overall system? 

• How do the system-wide attribute values depend on component-level and connector-level values? 

• How sensitive are system-wide attribute values to variations in component-level and connector-

level values? 

• Which component-level and connector-level attribute values are causing a bottleneck in system-

wide attribute values? 

 In section 2, we briefly present and motivate the main syntactic features that we have added to ACME; in 

section 3, we discuss the semantics of these constructs, in terms of Mathematica equations that we 

associate to them.  In section 4 we discuss the generation of a compiler that reads product architectures 

written in the proposed language and supports the analysis of the architecture through a user interface.  

This system is illustrated in section 5 through a sample example; the paper concludes in section 6 by a 

discussion of our current results and of our prospects for future research.  

2. A Language for Software Architectures:  Syntax 

In order to enable us to represent and reason about non functional properties of software architectures, an 

architectural description language must fulfill the following conditions: 

1. Support ACME’s ontology of components, connectors, ports and roles. 

2. Support the ability to represent non functional attributes of components and connectors. 

3. Provide constructs that enable us to represent operational information that impacts the non 

functional attributes.  At a minimum, we must be able to identify, among ports of a component 



(and roles of a connector) which ports are used for input and which ports are used for output.  

Furthermore, if we have more than one input port or more than one output port, we need to 

represent the relation between the ports: are they mutually synchronous or asynchronous? Do 

they carry duplicate information? or disjoint/ complementary information? or overlapping 

information? 

4. Provide means for a component (or a connector) to represent more than one relation from input 

ports to output ports. 

Among all the architecture description languages that we have considered, we have found none that meets 

these four requirements.  Most languages focus primarily on representing the topology of the system; 

some languages, such as Wright [Allen, 1997] and PADL [Aldini et al, 2010] complement the topological 

information with operational information, but the latter is expressed in CSP [Hoare, 2004] which is too 

detailed for our purposes, and at the same time fails to always provide the information we need.   

To cater to the four requirements we have presented above, we adopt ACME’s basic syntax and ontology, 

and add to it the concept of functional dependency.  We illustrate this concept with a simple/ artificial 

example:  Imagine that we want to represent an Order Processing component (OP) in an online 

application; and imagine that OP has five ports, a port Order (that feeds orders), a port BankAuth (that 

feeds bank authorizations), a port Virt  (that records virtual orders, i.e. orders that do not require anything 

to be shipped, such as subscriptions, memberships, etc), a port Stock  (that maintains a database of 

merchandise), a port Shipping (that schedules shipments), and a port Archive (that maintains a database of 

customer orders).  Imagine that the operation of this component depends on two orthogonal options:  

First, whether the order is a complimentary order (e.g. a promotional offer) or a paid order; second, 

whether the order involves a virtual service (membership, subscription, information, access right) or real 

merchandise.  As a result, this component can operate in one of four modes, each with a distinct set of 

input ports and output ports, and each with possibly distinct quality attributes (in terms of response time, 

throughput, capacity, reliability, etc).  To represent this situation, we write the following functional 

dependencies (keyword:  FunDep): 

 FunDep  {   FreeVirt (); 

                  FreeReal (); 

                  PayVirt  (); 

                  PayReal  ();  } 

This (yet incomplete) description fits at the end of the component description, after the declaration of all 

the ports; we refer to each item in the FunDep declaration as a functional dependency relation of the 

component.  Each relation is defined by three terms, namely:  an input, an output, and an aggregate of 

properties (reflecting quality attributes).   If the input field refers to a single port, then we write 

input(〈〈〈〈port〉〉〉〉).  But if the input field refers to multiple ports, then we need to specify: 

• Whether all of them are needed (if they provide complementary information), or any one of them 

(if they are interchangeable), or most of them (in a fault tolerance scheme). 

• Whether they have to make data available synchronously or asynchronously 



For output ports, in case of multiple ports, we need to specify the following details: 

• Whether the outputs posted on the different output ports are duplicates (i.e. identical to each 

other), exclusive (complementary and not overlapping) or overlapping (some data are shipped to 

more than one output port. 

• Whether the data posted on output ports is posted simultaneously on all output ports, or is posted 

as available. 

For the Property field of each relation, we post the names of the quality attributes (from a predefined 

vocabulary), along with values in predefined units (e.g. ms for response time, transactions/second for 

throughput, abstract number between 0 and 1 for failure probability, etc).  Returning to the example 

above, we may write, for example:  

 FunDep  {FreeVirt (input(Order),  

                  output(Virt), 

                  properties (response_time=0.02, 

                              throughput=20)); 

                FreeReal (input(Order),  

                   output(overlapping(asavailable(Stock, Shipping))), 

                   properties (response_time=0.035, 

                               throughput=15)); 

                PayVirt  (input(allof(asynch(Order,BankAuth))),  

                   output(Virt), 

                   properties (response_time=0.04, 

                               throughput=12)); 

                PayReal  (input(allof(asynch(Order,BankAuth))),  

                   output(overlapping(asavailable(Stock,Shipping,Archive))), 

                   properties (response_time=0.045, 

                               throughput=10));  } 

 

To test the adequacy of this language, we considered a number of sample architectures found in the 

literature, and we attempted to represent them using the proposed notation.  The include:  the AEGIS 

Weapons System [Allen, 1997]; The Video Animation Repainting System [Eduardo, 2008]; the e-Bay e-

commerce Platform [Ahmed]; and the Rule Based System [Garlan and Shaw, 1996].  We found that: first, 



all the information required by the language was readily available from the description of the systems in 

question;  second, the information required by the language felt perfectly appropriate for an architecture-

level description.  

5. A Language for Software Architectures:  Semantics 

In order to use the information recorded in this notation for the purpose of analyzing software 

architectures, we take the following modeling decisions.   

• Each port in a component is labeled for input or for output. 

• Each role in a connector is labeled as an origin or a destination. 

• Each architecture has a single component without input port, called the source, and a single 

component without output ports, called the sink.    

Furthermore, in the context of this paper, we impose the following restrictions:  Each component includes 

a single functional dependency relation;  analyzing components with multiple dependency relations is not 

beyond the capability of our model, but is beyond the scope of this paper.  It would require the 

introduction of a probability distribution between the various relations in a single component, and would 

require that we estimate lower bounds and upper bounds for the system attributes. 

Given these conditions, we define as attribute grammar that assigns to each port and each role a set of 

attributes that are related to the quality attributes we are interested in.  Hence each port has a response 

time attribute called RT, a throughput attribute called TP, a reliability attribute called FP (for failure 

probability), etc.  Then we assign to the output port of the source component trivial values for these 

attributes, such as zero for the response time, zero for failure probability, infinity for throughput, etc.  

Then for each functional dependency relation we associate an equations between the attributes of the 

ports and roles that are involved in the relation.  The equation depends of course on the nature of the 

functional dependency; for example, if two ports are linked by an allOf construct, the response time 

associated with the output ports of the relation is the max of the response times associated to the output 

ports to which we add the processing time of the components, and the throughput  associated to the output 

ports is the min of the throughputs associated with the input ports, and the throughput capacity of the 

component.  This process is illustrated in the following section. 

Response Time 

For each port or role we associate the following attribute:  port.RT is the minimal time that takes a 

computation proceeding from DataSource to reach this port.  role.RT is the minimal time that takes a 

computation proceeding from DataSource to reach this role. 

Whence we define the following semantic rules: 

•  We assign zero to the output port of DataSource , we write: 

                 DataSource.outputPort.RT = 0. 

• For each component C, having multiple input ports and multiple output ports we have:  



For each functional dependency R, expressed as following: 

FunDep : { 

     R (  Input(In_selection ( In_synchronisation (inputPort1, inputPort2, …,  inputPortn)));  

            Output(Out_selection ( Out_synchronisation (outputPort1, outputPort2, …,  outputPortk)) ) ;  

            Properties ( processing_time = 0.2 sec;)  

           ) 

               }; 

For each output port  outputPort_i expressed in the relation R, we write: 

C.outputPort_i.RT = function (C.inputPort1.RT, C.inputPort2.RT, … , C.inputPortn.RT) +     

C.R.ProcessingTime. 

where function depends on the construct In_selection, expressing the nature of the relation between 

input ports. 

o If  In_selection is  AllOf,  function is the maximum, we write: 

 C.outputPort_i.RT = Max (C.inputPort1.RT, C.inputPort2.RT, … , C.inputPortn.RT) +     

C.R.ProcessingTime. 

o If  In_selection is AnyOf,  function is the minimum, we write: 

 C.outputPort_i.RT = Min (C.inputPort1.RT, C.inputPort2.RT, … , C.inputPortn.RT) +     

C.R.ProcessingTime. 

• For each connector N we have : 

                    N.receiverRole.RT = N.senderRole.RT + N.TransmissionTime 

• For each attachment statement of the form  

                    C.ouputPort to N.receiverRole 

 We write: 

                     C.outputPort.RT = N.receiverRole.RT 

• For each attachment statement of the form  

                    C.inputPort to N.senderRole 

 We write: 

                     C.inputPort.RT = N.senderRole.RT 

 

6. A Language for Software Architectures:  A Compiler 



As an illustration, we consider the architecture of the Aegis Weapons System [Allen, 1997].  We are 

interested in analyzing the system wide response time of this architecture.  A graphic representation of 

this architecture is given below.   

Aegis System 

 

In this architecture, Datasource  is a unique source component, and Datasink  is a unique sink 

component.  We show below the code we write for some of the components of this architecture, along 

with the Mathematica equations that our compiler generates from this code.  

Component Datasource{ ... // ACME code describing this component 

FunDep : {R1 ( ;  Output(output);  

               Properties ( processing_time = 0 sec; )   

              ) 

     };  

The compiler generates the following Mathematica equation: 

Datasource. output.RT =0. 

For the following component, 

Component Display_Server { ... // ACME code describing this component 

FunDep : {R1 ( Input( AllOf(Synchronous(inputT0, inputT1, inputT2, input)));   

               Output(output);  

               Properties ( processing_time = 1 sec; )   

              ) 



};   

The compiler generates the following Mathematica equation: 

Display_Server .output.RT = Max (Display_Server .inputT0.RT,  Display_Server .inputT1.RT,  

 Display_Server .inputT2.RT , Display_Server.input.RT)+ Display_Server .R1.RT 

For the following component, 

Component Doctrine_Authoring {...  // ACME code describing this component 

FunDep : { R1 ( Input( Synchronous(input)); 

                Output(Duplicate(Simultaneous (output, outputT1, outputT0, outputT2))) ;  

                Properties ( processing_time = 0.7 sec;)  

               ) 

        }; 

The compiler generates the following Mathematica equations: 

Doctrine_Authoring . output.RT = Doctrine_Authoring .R1.PT + Doctrine_Authoring . Input.RT 

Doctrine_Authoring . outputT0.RT = Doctrine_Authoring . R1.PT + Doctrine_Authoring . Input.RT 

Doctrine_Authoring . outputT1.RT = Doctrine_Authoring .R1.PT + Doctrine_Authoring . Input.RT 

Doctrine_Authoring . outputT2.RT = Doctrine_Authoring . R1.PT + Doctrine_Authoring . Input.RT 

For the following component, 

Component Doctrine_validation  {  ...  // ACME code describing this component 

FunDep : { R1 (  Input( AllOf(Synchronous(inputT0, inputT1, input)));  

                 Output(output) ;  

                 Properties ( processing_time = 0.7 sec;)  

                ) 

            }; 

The compiler generates the following Mathematica equations: 

Doctrine_validation.output.RT = Max (Doctrine_validation.inputT0.RT,  

Doctrine_validation.inputT1.RT, Doctrine_validation.input.RT)+ Doctrine_validation.R1.RT 

For the following component, 

Component Track_server {  ...  // ACME code describing this component 

FunDep : {R1 (  Input(Synchronous(input)) ;  

                Output(Duplicate(Simultaneous (outputT2, outputT1, outputT0, output))) ; 



                     Properties ( processing_time = 1 sec; )   

               )   

          }; 

 The compiler generates the following Mathematica equations: 

Track_server. output.RT = Track_server .R1.PT + Track_server. Input.RT 

Track_server. OutputT0.RT = Track_server .R1.PT + Track_server. Input.RT 

Track_server. OutputT1.RT = Track_server .R1.PT + Track_server. Input.RT 

Track_server. OutputT2.RT = Track_server .R1.PT + Track_server. Input.RT 

 

For the following component, 

Component Geo_server  {  ...  // ACME code describing this component  

FunDep : { R1 (Input( AllOf(Synchronous(inputT0, input)));  

               Output(output) ;  

              Properties ( processing_time = 3 sec;) 

              )     

          }; 

The compiler generates the following Mathematica equations 

Geo_server. output.RT = Geo_server .R1.PT +  Max(Geo_server. Input.RT ; Geo_server. InputT0.RT ) 

For the following component, 

Component Doctrine_reasoning  {  ...  // ACME code describing this component 

FunDep : {R1 ( Input( AllOf(Synchronous(inputT0, inputT2, input))); 

               Output(output) ;  

               Properties ( processing_time = 1 sec;) 

                )     

         };  

The compiler generates the following Mathematica equations 

Doctrine_reasoning. output.RT = Doctrine_reasoning .R1.PT + 

Max(Doctrine_reasoning. Input.RT ; Doctrine_reasoning. InputT0.RT ; Doctrine_reasoning.InputT2.RT) 

Finally, for the following component,  



   Component Experiment_control  {  ...  // ACME code describing this component 

FunDep : {R1 (  Input( Synchronous(input));  

                Output(Exclusive(AsAvailable(outputT1, outputT0, output)) ) ;  

                 Properties ( processing_time = 0.2 sec;)  

               ) 

         }; 

The compiler generates the following Mathematica equations: 

Experiment_control. output.RT = Experiment_control.R1.PT + Experiment_control. Input.RT 

Experiment_control. outputT0.RT = Experiment_control.R1.PT + Experiment_control. Input.RT 

Experiment_control. outputT1.RT = Experiment_control.R1.PT + Experiment_control. Input.RT 

After we generate the equations pertaining to the connectors, and equate system attributes to the attributes 

of the output port of the sink component, we find equations that characterize the non functional attributes 

of the system as a function of the component and connector attributes.  

 

7. An Automated Tool 

We have developed an automated tool that analyzes architectures according to the pattern discussed in 

this paper.  This tool invokes the compiler to generate the Mathematica equations that characterize the 

system’s non-functional attributes.  Then it uses the equations to compute actual values of the system’s 

attributes or to highlight functional dependencies between the attributes of the system and the attributes of 

the system’s components and connectors.  A demo of this tool can be downloaded from the following 

address:  http://web.njit.edu/~mili/arcdemo1.avi.  This tool can be demo-ed at the conference in case of 

acceptance. 

*Symbolic Resolution:  

System.RT= Datasink•input•RT= 

Display_Server•R1•PT+Experiment_control•R1•PT+ 

Max[Doctrine_Authoring•R1•PT+Pipe0•TT+Pipe11•TT  ,  

        Track_server•R1•PT+  Pipe13•TT+Pipe2•TT,  

        

Doctrine_validation•R1•PT+Pipe12•TT+Max[Pipe1•TT,Doctrine_Authoring•R1•PT+Pipe0•TT+Pipe3•T

T,Pipe2•TT+Pipe4•TT+Track_server•R1•PT] , 

        A ] 



Where  

A=Doctrine_reasoning•R1•PT+Pipe10•TT+ 

      Max[Doctrine_Authoring•R1•PT+Pipe0•TT+Pipe6•TT,  

               Pipe2•TT+Pipe7•TT+Track_server•R1•PT,      

Geo_server•R1•PT+Pipe9•TT+Max[Doctrine_Authoring•R1•PT+Pipe0•TT+Pipe5•TT,Pipe2•TT+Pipe8•

TT+Trackserver•R1•PT] ] 

* Numeric Application 

By substituting component properties and connector properties by their values, given in the table 

below, we find the following system response time :System.RT= 7.23 

 

Screenshot of the tool showing Aegis components and connectors properties after the 

compilation of Acme description. 



 

Screenshot of the tool showing symbolic and numeric resolution of equations generated by 

the compiler. 

 



8. Conclusion:  Summary, Assessment, and Prospects 

In this paper, we have discussed the need to develop automated tools to analyze software architectures 

written in a formal ADL.  Also, we have proposed an ADL that is an extension of ACME, and discussed 

the development and operation of a compiler that compiles architectures written in this language to 

generate equations that characterize non functional attributes of software architectures.  The tool that we 

have developed, which includes the compiler and the user interface, may be demo-ed at the conference in 

case of interest.  Our work can be characterized by the following attributes, which set it apart from other 

work on architectural analysis [Aldini and Bernardo, 2005; Aldini et al, 2010; Balsamo et al, 2003; 

Clements et al, 2010; Spitznagel and Garlan, 1998]:   

• It is based on ACME’s architectural ontology, 

• It is based on the architectural-level concept of functional dependency, 

• It supports symbolic analysis of architectural attributes, by means of symbolic equations 

generated by Mathematica (in addition to numeric analysis, which computes actual system 

attributes as a function of component and connector attributes). 

• It is supported by an automated tool. 

This work is clearly in its infancy; it is no more than a proof of concept to the effect that it is possible to 

reason automatically about non functional attributes of software architectures, given sufficient 

architectural information and component/ connector attributes.  Among the extensions we envision for 

this work, we cite: 

• Extend our work to cases where the same component may have more than one functional 

dependency relation. 

• Extend our work to other non functional attributes; in the longer term, extent it to user defined 

attributes, that then need to be axiomatized by the user to support automated reasoning. 

• Make the inductive rules more flexible/ more generally applicable, by replacing the current 

inductive equations with inequalities, and replacing the current equation resolution by function 

optimization. 

• In the longer term, we envision to broaden our model from a “components and connectors” view 

of architectures, to accommodate other architectural styles. 

• Concurrently, we are also considering a radically different approach to architectural analysis, 

which consists in computing non functional attributes by means of general graph algorithms, 

such as shortest path, or maximum flow, or minimum spanning tree, etc. 

 

 

 



9. References 

 

[Ahmed]: Mohammad Usman Ahmed. E-Bay E-Commerce Platform:  A Case Study in Scalability.  

Technical Report, School of Computer Science, McGill University, Montreal, Quebec, Canada.  

Available online at:   http://www.cs.mcgill.ca/~mahmed26/eBay_Architecture_Study.pdf 

[Aldini and Bernardo, 2005]:  Alessandro Aldini and Marco Bernardo.  On the usability of process 

algebra: An architectural view.  Theoretical Computer Science, vol 335, no 2-3, pages 281-329, 2005. 

[Aldini et al, 2010]:  Alessandro Aldini, Marco Bernardo and Flavio Corradini.  A process Algebraic 

Approach to Software Architecture Design.  Springer Verlag, 2010. 

[Allen, 1997]:  A Formal Approach to Software Architecture. Ph.D. Thesis, Carnegie Mellon University, 

Technical Report Number: CMU-CS-97-144, May, 1997. 

[Balsamo et al, 2003]: Simonetta Balsamo, Marco Bernardo and Marta Simeoni,  Performance Evaluation at the 

Software Architecture Level.  Proceedings, SFM 2003:  Third International School on Formal Methods for the 

Design of Computer, Communication and Software Systems: Software Architectures, SFM 2003, 

Bertinoro, Italy, September 22-27, 2003, pages 207-258. 

 

[Bass et al, 2003]:  Len Bass, Paul Clements, Rick Kazman: Software Architecture in Practice, Second 

Edition. Addison Wesley, Reading 5/9/2003 ISBN 0-321-15495-9. 

[Buschmann et al, 2007]:  Frank Buschmann; Kevlin Henney; Douglas C. Schmidt (2007). Pattern-

Oriented Software Architecture: On Patterns and Pattern Languages.  John Wiley & Sons. 

[Clements et al, 2010]:  Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed 

Little, Paulo Merson, Robert Nord, Judith Stafford: Documenting Software Architectures: Views and 

Beyond, Second Edition. Addison-Wesley, 2010, ISBN 0321552687.  

[Frakes and Kang, 2007]:  Frakes, William B.; Kang, Kyo (July 2007). "Software Reuse Research: 

Status and Future". IEEE Transactions on Software Engineering.  31 (7): 529–536. 

[Garlan and Shaw, 1996]:  David Garlan and Mary Shaw (1994). "An Introduction to Software 

Architecture:  Perspectives on an Emerging Discipline".  Prentice Hall, 1996. 

[Hoare, 2004]: C.A.R. Hoare.  Communicating Sequential Processes.  June 2004.  Manuscript available 

online at:  http://www.usingcsp.com/cspbook.pdf 

[Kang et al, 2004]:  Kang, Kyo C.; Lee, Jaejoon; Kim, Kijoo; Kim, Gerard Jounghyun; Shin, Euiseob 

(October 2004).  "FORM: A Feature-Oriented Reuse Method with Domain-Specific Reference 

Architectures".  Annals of Software Engineering (Springer Netherlands): 143–168. 

[Mili et al, 2002]:  Mili, H., A. Mili, Sh. Yacoub and E. Addy.  Reuse Based Software Engineering:  

Techniques, Organizations, and Controls.  John Wiley and Sons, 2002. 

[Spitznagel and Garlan, 1998]:  Bridget Spitznagel and David Garlan.  Architecture-Based Performance 

Analysis.  Proceedings of the 1998 Conference on Software Engineering and Knowledge Engineering.  

Pages 146-151, 1998. 


