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Abstract—It is so inconceivable to debug a program without 

testing it that these two words are used nearly interchangeably.  

Yet we argue that using the concept of relative correctness we 

can indeed remove a fault from a program and prove that the 

fault has been removed, by proving that the new program is 

more correct than the original.  This is a departure from the 

traditional roles of proving and testing methods, whereby static 

proof methods are applied to a correct program to prove its 

correctness, and dynamic testing methods are applied to an 

incorrect program to expose its faults. 

Keywords—debugging; testing; correctness; relative 

correctness; faults; fault removal. 

I. INTRODUCTION 

In  (Ali Mili, 2014) Mili et al introduce a definition of 
relative correctness, i.e. the property of a program to be more-
correct than another with respect to a specification; to contrast 
relative correctness with the traditional definition of program 
correctness, we may refer to the latter as absolute correctness.  
Given a specification, we can use absolute correctness to 
divide candidate programs into two classes:  correct programs, 
and incorrect programs.  But by using relative correctness, we 
can arrange candidate programs according to a rich partial 
ordering structure, rather than simply dividing them into two 
classes.  Also, whereas traditionally the division of labor 
between testing methods and proving methods is clear cut, 
whereby proving methods are deployed on correct programs to 
prove their correctness and testing methods are deployed on 
incorrect programs to expose their faults, relative correctness 
enables us to straddle this dividing line.  Specifically, we can 
use relative correctness to prove that a program, though it may 
be incorrect, is still more-correct than another.  This approach 
can usefully complement testing activities, by virtue of the law 
of diminishing returns. 

An obvious application of this concept is in fault removal:  
when we remove a fault from a program, we have no reason to 
expect the new program to be correct, since it may have other 
hidden faults; but we ought to expect it to be more-correct than 
the original, since that is the only condition under which we 
may consider that the fault has indeed been removed.  In this 
paper, we explore the possibility of removing faults by static 
analysis of the program’s source code, and proving that the 
fault has effectively been removed by proving that the new 
program is more-correct than the original.  Broadly speaking, 
this method has the same advantages and disadvantages as 
traditional methods for proving correctness by static analysis:  

namely that it offers the confidence and certainty of formally 
provable results, at the cost of mathematical formalisms and 
limited scalability.  At the same time as we present the method, 
we also discuss means to capitalize on its advantages while 
mitigating its disadvantages. 

In section II, we introduce some elements of relational 
mathematics that we use throughout the paper to formulate our 
results; we use this background in section III to introduce the 
concept of relative correctness and in section IV to discuss how 
relative correctness can be used to provably remove faults in 
programs.  We summarize our work, compare it to related 
work and sketch future research directions in sevtion V. 

II. RELATIONAL MATHEMATICS 

We assume the reader familiar with elementary relational 

concepts  (Chris Brink, 1997); the goal of this section is 

merely to introduce notations and definitions that we use 

throughout the paper.  Given a set 𝑆, we let a relation 𝑅 on 𝑆 

be a subset of the Cartesian product 𝑆 × 𝑆.  Elements of a 

relation are usually denoted by pairs of the form (𝑠, 𝑠’).  
Constant relations on S include the empty relation (∅), the 

identity relation (𝐼) and the universal relation (𝐿).  Operations 

on relations include the usual set theoretic operations (∪,∩

,/, ̅ ),  as well as the relational product, which we merely 

represent by concatenating the operands (as we do in 

arithmetic).  Given a relation R on S, we let the reverse of R 

be the relation denoted by 𝑅̂  (or 𝑅^ ) and defined by 𝑅̂ =
{(𝑠, 𝑠′)|(𝑠′, 𝑠) ∈ 𝑅}.   We use the notation 𝑅𝑖 , where 𝑅  is a 

relation and 𝑖 is a natural number to denote the product of 𝑅 

by itself 𝑖 times if 𝑖 > 0, and 𝐼 if 𝑖 = 0.  We let the transitive 

closure of relation R be the relation denoted by 𝑅+  and 

defined by 𝑅+ = {(𝑠, 𝑠′)|∃𝑖 > 0: (𝑠, 𝑠′) ∈ 𝑅𝑖}, and we let the 

reflexive transitive closure of 𝑅 be denoted by 𝑅∗ and defined 

by: 𝑅∗ = 𝐼 ∪ 𝑅+.  

 

We say that a relation 𝑅 is a vector if and only if 𝑅𝐿 = 𝑅.  

Vectors are relations of the form 𝑅 = 𝐴 × 𝑆, for some subset 

𝐴 of 𝑆.  We use vectors as a relational representations of sets; 

hence for example, we represent the domain of relation 𝑅 by 

the vector 𝑅𝐿.  We say that relation 𝑅 refines relation 𝑅’ if and 

only if:  𝑅𝐿 ∩ 𝑅′𝐿 ∩ (𝑅 ∪ 𝑅′) = 𝑅′.  We say that relation 𝑅 is 

reflexive if and only if  𝐼𝑅, that relation 𝑅 is symmetric if 

and only if 𝑅 = 𝑅̂, and that relation 𝑅 is transitive if and only 

if 𝑅𝑅𝑅. 
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Given a program 𝑝  on variables 𝑥, 𝑦, …  𝑧  of types 

𝑋, 𝑌, …  𝑍; we let the space of 𝑝 be defined as the Cartesian 

product 𝑆 = 𝑋 × 𝑌 × … 𝑍.   We usually use the name 𝑠 as an 

element of 𝑆, to stand for the aggregate 𝑥, 𝑦, . . 𝑧.  Program 𝑝 

defines a function from its initial states to its final states, 

which we represent by upper case 𝑃.  Specifications on space 

𝑆 are relations on 𝑆, and we say that a program 𝑝 is correct 

with respect to a specification 𝑅  if and only if 𝑃  refines 𝑅 .  

We admit without proof that a program 𝑝 is correct (or, for 

contrast, absolutely correct) with respect to a specification 𝑅 

if and only if (𝑅 ∩ 𝑃)𝐿 = 𝑅𝐿.   

III. RELATIVE CORRECTNESS 

A. Deterministic Programs 

 

Given a specification 𝑅 on space 𝑆 and a program 𝑝 on space 

𝑆, we find that the domain of  (𝑅 ∩ 𝑃) is the set of initial 

states for which program 𝑝 behaves according to specification 

𝑅; we refer to this set as the competence domain of 𝑝 with 

respect to 𝑅.  We say that a program 𝑝’ is more-correct with 

respect to 𝑅 than a program 𝑝 if and only if  the competence 

domain of 𝑝’ is a superset of the competence domain of 𝑝, i.e. 

(𝑅 ∩ 𝑃′)𝐿  (𝑅 ∩ 𝑃)𝐿. 
By construction, the competence domain of any candidate 

program with respect to a specification 𝑅  is necessarily a 

subset of (or equal to) 𝑅𝐿; according to the discussion of the 

previous section, when it equals 𝑅𝐿, the program is correct 

with respect to 𝑅.  Hence relative correctness culminates in 

absolute correctness.  To illustrate relative correctness, and 

contrast it to absolute correctness, we present a simple 

example of a specification and ten candidate programs, and 

show how these ten candidates are ranked by relative 

correctness, while absolute correctness merely divides them 

into two broad classes.  We consider the following 

specification R on space S of the natural numbers: 

𝑅 = {(𝑥, 𝑥′)|𝑥2 ≤ 𝑥′ ≤ 𝑥3}, 
and we consider the following candidate programs; for each 

program, we present the program function, then the 

competence domain with respect to 𝑅. 

 

0. p0: {abort};   𝑃0 = ∅.  𝐶𝐷0 = ∅. 
1. p1: {x=0;};    

𝑃1 = {(𝑥, 𝑥′)| 𝑥′ = 0}.  𝐶𝐷1 = {0}. 
2. p2: {x=1;};  

𝑃2 = {(𝑥, 𝑥′)| 𝑥′ = 1}.  𝐶𝐷2 = {1}. 
3. p3: {x=2*x^3-8} ;   

𝑃3 = {(𝑥, 𝑥′)| 𝑥′ = 2𝑥3 − 8}.  𝐶𝐷3 = {2}. 
4. p4: {skip};   

𝑃4 = {(𝑥, 𝑥′)| 𝑥′ = 𝑥}.  𝐶𝐷4 = {0,1}. 
5. p5: {x=2*x^3-3*x^2+2} ;  𝑃5= 

{(𝑥, 𝑥′)| 𝑥′ = 2𝑥3 − 3𝑥2 + 2}.𝐶𝐷5 = {1,2}. 

6. p6: {x=x^4-5*x};   

𝑃6 = {(𝑥, 𝑥′)| 𝑥′ = 𝑥4 − 5𝑥}. 𝐶𝐷6 = {0,2}. 

7. p7: {x=x^2}; 

𝑃7 = {(𝑥, 𝑥′)| 𝑥′ = 𝑥2}.  𝐶𝐷7 = 𝑆. 
8. p8: {x=x^3} ;    

𝑃8 = {(𝑥, 𝑥′)| 𝑥′ = 𝑥3}.  𝐶𝐷8 = 𝑆. 
9. p9: {x=(x^2+x^3)/2} ;    

𝑃9 = {(𝑥, 𝑥′)| 𝑥′ =
𝑥2+𝑥3

2
}.  𝐶𝐷9 = 𝑆. 

The following figure shows the graph of the relative 

correctness relationships between these programs; note that 

while absolute correctness divides this set of candidates into 

two classes (correct vs incorrect), relative correctness defines 

a richer structure of partial ordering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1:  Ranking Candidates by Relative Correctness 

 

B. Non Deterministic Programs 

In [1], Desharnais et al generalize the definition of relative 
correctness to non-deterministic programs.  Doing so is 
important not only because we want to compare non-
deterministic programs, but also because we want to compare 
deterministic programs without having to compute their 
deterministic function in all its detail.  In this section, we 
merely introduce this definition, and discuss its significance, 
reverting for the remainder of this paper to the definition for 
deterministic programs. 

Given a specification 𝑅  and two (not necessarily 

deterministic) programs 𝑝  and 𝑝’ , we say that 𝑝’  is more-

correct than 𝑝 with respect to specification 𝑅 if and only if:  
(𝑅 ∩ 𝑃)𝐿(𝑅 ∩ 𝑃′)𝐿 (𝑅 ∩ 𝑃)𝐿 ∩ 𝑅̅ ∩ 𝑃′𝑃.   
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Informally, 𝑝’  is more-correct than 𝑝  if and only if it has a 
larger competence domain, and does not violate 𝑅  except 
whenever 𝑝 does (i.e. violates 𝑅 less often than 𝑝).  Note that 
while the competence domain of a deterministic program 𝑝 
with respect to a specification 𝑅 is the set of initial states for 
which 𝑝 does behave according to 𝑅, the competence domain 
of a non-deterministic program is the set of initial states where 
program 𝑝 may behave according to 𝑅. 

 

C. Faults and Fault Removal 

Before we define faults, we must recognize that any 
definition of a fault implicitly assumes a scale of granularity; 
when we resolve to locate a fault in a program, we usually 
mean to identify a line of code, or a statement, or a condition, 
or a lexical token that may be faulty.  We use the term feature 
to refer to a piece of source code at the appropriate level of 
granularity, and we introduce the following definition:  Given a 
specification 𝑅 and a program 𝑝, and given a feature 𝑓 in 𝑝, we 
say that 𝑓 is a fault in program 𝑝 with respect to 𝑅 if and only 
if it admits a substitution that would make the program more-
correct.  We assume that skip (the empty statement) is part of 
our vocabulary of statements, so that this definition includes 
missing statements and extraneous statements as possible 
faults. 

Also, we define monotonic fault removal as follows:  Given 
a specification 𝑅, a program 𝑝, and a fault 𝑓 in 𝑝, we say that 
the pair of features (𝑓, 𝑓’) represents a fault removal of 𝑓 in 𝑝 
with respect to 𝑅 if and only if the program 𝑝’ obtained from 𝑝 
by replacing 𝑓 with 𝑓’ is more-correct than 𝑝 with respect to 𝑅. 

We argue that this definition of (monotonic) fault removal 
provides us with a logical framework for corrective 
maintenance through correctness-enhancing transformations, in 
the same way as (and for the same purpose as) refinement 
provides us with a logical framework for program derivation 
through correctness-preserving transformations.  Also, while 
we use the term monotonic (in monotonic fault removal) for 
emphasis, we consider that a substitution (𝑓, 𝑓’)  cannot be 
considered a fault removal unless it is indeed monotonic (i.e. it 
makes 𝑝’ more-correct than 𝑝). 

 

D. Provable Fault Removal 

If we find a fault 𝑓 in a program 𝑝, replace 𝑓 by a feature 𝑓’ 
to obtain a new program 𝑝’, then test program 𝑝’ on some test 
data 𝑇, then depending on the configuration of the competence 
domain of 𝑝 (say, 𝐶𝐷), the competence domain of 𝑝’ (say, 𝐶𝐷’) 
and test data 𝑇, we expose ourselves to two risks: 

 Program 𝑝’ may fail on test data 𝑇 even though it is more-
correct than 𝑝; this may happen if 𝐶𝐷’ is a superset of 𝐶𝐷, 
but it is not a superset of 𝑇.  See Figure 2(a). 

 Program 𝑝’  may run successfully on test data 𝑇  even 
though it is not more-correct than program 𝑝; this may 
happen if 𝐶𝐷’  is a superset of 𝑇 without being a superset 
of 𝐶𝐷.   See Figure 2(b). 

In both of these situations, the test misleads us to the wrong 
conclusion about the fault removal.  As an alternative, we 
consider proving that 𝑝’  is more-correct than 𝑝 , rather than 
trying to infer relative correctness through testing.  One of the 
main obstacles to this alternative approach is that it requires 
that we compute the function of the two programs, a rather 
steep requirement, usually.  Hence we consider ways to 
establish relative correctness without having to compute 
program functions.  This is the focus of the next section. 
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Figure 2:  Misleading Tests 

 

IV. FAULT REMOVAL IN ITERATIVE PROGRAMS 

 

A. Invariant Relations 

Let 𝑤 be a while loop on space 𝑆 of the form  
w:  while (t) {b;} 

and let 𝐵  be the function of the loop body and 𝑇 be the 

following relation, which represents the loop condition, i.e. 

𝑇 = {(𝑠, 𝑠′)|𝑡(𝑠)}.  We assume that this while loop terminates 

for all states in 𝑆, and we define an invariant relation of 𝑤 to 

be a reflexive transitive superset of (𝑇 ∩ 𝐵).  According to 

this definition, an invariant relation of w is a superset (an 

approximation) of the reflexive transitive closure of (𝑇 ∩ 𝐵).  

Because invariant relations have a similar name to the widely 

known invariant assertions [2], we highlight here the main 

differences and relations between them. 

 Whereas an invariant assertion is a unary predicate 

(characterizing a single state), an invariant relation is a 

binary relation (characterizing two states). 

 Whereas an invariant assertion characterizes states of the 

iteration after an arbitrary number of iterations, an 

invariant relation characterizes two states separated by an 

arbitrary number of iterations (hence, in particular, the 

initial state and final state). 

 Whereas an invariant assertion depends on the loop as 

well as on the precondition of the loop, an invariant 

relation depends exclusively on the loop. 

CD’ 
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 Whereas all invariant assertions stem from invariant 

relations, only a small class of invariant relations can be 

derived from invariant assertions. 

As an illustration, we consider the following simple loop on 
natural variables 𝑛, 𝑓, and 𝑘: 

{k=1; f=1; while (k<=n) {f=f*k; k++;}} 

Then 

 An invariant assertion of this loop, for the given 
initialization, is:  𝐴 ≡ (𝑓 = (𝑘 − 1)!). 

 An invariant relation for the while loop, regardless of its 

initialization, is:  𝑉 = {(𝑠, 𝑠′)|  
𝑓

(𝑘−1)!
=

𝑓′

(𝑘′−1)!
}. 

 Note that we can derive the invariant assertion 𝐴 from the 
invariant relation 𝑉  by taking its post-restriction to the 
precondition (𝑓 = 1𝑘 = 1). 

 

B. Invariant Relations and Absolute Correctness 

In [3] we present a method to prove the correctness or 
incorrectness of a loop with respect to a specification, using 
invariant relations.  This method is based on the following two 
propositions, which give, respectively, a sufficient condition 
and a necessary condition of correctness of a (uninitialized) 
while loop with respect to a specification R.   

Proposition:  Sufficient condition of correctness.  Let 𝑤 be a 

while loop of the form  while (t) {b;} on space 𝑆 and let 

𝑅 be a specification on 𝑆.  If w admits an invariant relation 𝑉 
that satisfies the following condition,  

𝑅𝑇̅𝑉𝐿(𝑉𝑅𝑇̂̅) = 𝑉 

then 𝑤 is correct with respect to 𝑅. 

Interpretation:  this condition provides that invariant relation 
𝑉 captures sufficient information about 𝑤  to subsume 
specification 𝑅; we do not need to compute the function of 𝑤, 
V captures enough information to conclude that w is correct. 

Proposition:  Necessary condition of correctness.  Let 𝑤 be a 

while loop of the form  while (t) {b;} on space 𝑆, let  𝑅 

be a specification on 𝑆, and let 𝑉 be an invariant relation of 𝑤.  
If 𝑤 is correct with respect to 𝑅 then we have necessarily:  

(𝑉𝑅)𝑇̅ = 𝑅𝐿. 

Interpretation:  while this is a necessary condition of 
correctness, it is best to interpret it by considering that its 
negation is a sufficient condition of incorrectness.  This 
proposition provides in effect that any while loop that admits 
an invariant relation 𝑉 that does not satisfy this condition could 
not possibly be correct with respect to 𝑅.  In other words, any 
while loop that admits an invariant relation 𝑉 that satisfies the 

condition (note the change from = to ) 

(𝑉𝑅)𝑇̅ ≠ 𝑅𝐿. 

is necessarily incorrect with respect to 𝑅 .  Any invariant 
relation 𝑉 that satisfies this condition is said to be incompatible 

with respect to specification 𝑅.  Any invariant relation that is 
not incompatible is said to be compatible. 

In [3] we present an algorithm for proving the correctness or 
incorrectness of a loop with respect to a specification, which 
proceds as follows: 

 Using an invariant relations generator, we generate 
invariant relations one by one, and test the sufficient 
condition and necessary condition. 

 If the aggregate of invariant relations found so far satisfy 
the sufficient condition then we conclude that the loop is 
correct, and we exit. 

 If one of the invariant relations proves to be incompatible 
with 𝑅, we conclude that the loop is incorrect, and we exit. 

 If we run out of invariant relations before we reach the 
conclusion that the loop is correct or that the loop is 
incorrect, then we conclude that we do not know enough 
about the loop to rule on its correctness (hence we must 
upgrade our invariant relations generator), and we exit. 

In the next section we discuss how we can use a variation of 
this algorithm to establish relative correctness, rather than 
absolute correctness. 

C. Invariant Relations and Relative Correctness   

Given a while loop 𝑤  of the form while (t) {b;} on 

space 𝑆  and a specification 𝑅  on 𝑆 , we are interested to 
determine whether 𝑤 is correct with respect to 𝑅, and if not 
how we can locate and remove a fault in 𝑤.  Ideally, we want 
to support all the steps in this process, namely: 

 Determine that the loop is incorrect (for else there is no 
fault to remove). 

 Determine the location of the fault. 

 Determine what to replace the fault with. 

 Prove that the substitution constitutes a monotonic fault 
removal. 

To this effect, we consider the following proposition, which we 
give without proof. 

Proposition:  Fault Removal Through Enhanced Compati-
bility.  Let 𝑅 be a specification on space 𝑆 and let 𝑤 be a while 

loop on 𝑆 of the form while (t) {b;} which terminates 

for all 𝑠  in 𝑆 .  Let 𝑄  be an invariant relation of 𝑤  that is 
incompatible with 𝑅, and let 𝐶 be the largest invariant relation 

of w such that  𝑊 = (𝐶𝑄)𝑇̅^.   Let 𝑤’ be a while loop that 
has 𝐶  as an invariant relation, terminates for all 𝑠  in 𝑆 , and 
admits an invariant relation 𝑄’ that is compatible with 𝑅  and 

satisfies the condition 𝑊′ = (𝐶𝑄′)𝑇̂̅^.    Then 𝑤’ is strictly 
more-correct than 𝑤 with respect to 𝑅. 

Interpretation:  This proposition provides that if we change 
loop w in such a way as to replace an incompatible invariant 
relation (Q) into a compatible invariant relation (Q’) of equal 

strength (so that (𝐶𝑄′)𝑇̂̅ ^ is deterministic, just like 
(𝐶𝑄)𝑇̅^) while preserving all the other invariant relations 
(C), then we obtain a strictly more-correct while loop.  What 



we mean by strictly more-correct is, of course, that the 
competence domain of 𝑤’  is a proper superset of the 
competence domain of 𝑤; in other words, 𝑤’ behaves correctly 
for all states on which 𝑤  behaves correctly, and it behaves 
correctly for at least one state on which 𝑤 fails. 

Using this Proposition, we propose the following algorithm for 
fault removal in while loops: 

1. Determination that the loop is faulty.  Given the 
specification 𝑅 and the while loop 𝑤, we generate all the 
invariant relations we can, and place them in two separate 
columns, one for compatible relations and one for 
incompatible relations. 

o If the incompatible column has at least one 
invariant relation, then the loop is incorrect, 
hence it has a fault. 

o If the incompatible column is empty and the 
intersection of all the compatible invariant 
relations satisfies the sufficient condition of 
correctness, then the loop is correct. 

o If neither of the conditions above hold, then we 
cannot rule on the correctness of the loop, and the 
algorithm fails (the invariant relations generator 
needs to be upgraded). 

2. Localization of the Fault.  We consider the incompatible 
column and select from it an invariant relation that 
involves the fewest possible variables; for the same 
number of variables, we select the invariant relation (say 
Q) whose variables are involved in the smallest number of 
statements in the loop.  We select one of these statements 
as the feature that we want to correct. 

3. Guidance to modify the selected statement.  We need to 
modify the selected statement in such a way as to replace 
the current incompatible invariant relation (Q) with a 
compatible invariant relation (Q’).  But we want to do so 
without affecting the compatible invariant relations.  This 
constraint is used to generate a condition that guides us in 
the modification process.  Let C be the intersection of all 
the compatible invariant relations, let 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛  be 
the program variables, and let 𝑥1, 𝑥2 be the two variables 
that appear in Q.  Then, to preserve the compatible 
invariant relations of the loop, variables 𝑥1, 𝑥2 ,  𝑥′1, 𝑥′2 
must satisfy the following constraint: 

∃  𝑥3, … 𝑥𝑛 , , 𝑥′3, … 𝑥′𝑛:  

(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, 𝑥′
1, 𝑥′

2, 𝑥′
3, … 𝑥′

𝑛) ∈ 𝐶. 

We refer to this condition as the condition of compatibility 
preservation. 

4. Verification of Fault Removal.  Once we have changed the 
selected statement in such a way as to preserve the 
compatible invariant relations, we recompute the invariant 
relations and ensure that the selected incompatible 
invariant relation is now replaced by a compatible 
invariant relation.  This ensures that we now have a more-
correct program than we did before.  This sends us back to 
step 1, to check whether the loop has now become correct 

(if its compatible relations subsume the specification) or 
whether it is still incorrect (if the incompatible column is 
still not empty).   

 

D. Invariant Relations and Relative Correctness Proofs 

As an illustrative example, we consider the state space S 
defined by the following variable declarations: 

const float upsilon = 0.00001; 

const float a= 0.15; 

const float b= 0.08; 

//  we always have:  0<b<a<1.0; 

float r, p, n, x, m, l, k, y, w, y, z, v, 

u, d;  int t; 

and we consider program 𝑤 on a state space 𝑆 defined by: 

p1: while (abs(r-p)>upsilon) 

      {t=t+1;  n=n+x;  m=m-l;  l=(1+b)*l; 

       k=k+1000; y=n+k;  w=w+z; z=(1+a)+z; 

       v=w+k;r=(v-y)/y;u=(m-n)/n;d=r-u;} 

The invariant relations generator produces  fourteen invariant 
relations: 

 𝑉1 = {(𝑠, 𝑠′)| 𝑥′ = 𝑥}. 

 𝑉2 = {(𝑠, 𝑠′)|𝑡𝑡′}. 

 𝑉3 = {(𝑠, 𝑠′)|𝑘𝑘′}. 

 𝑉4 = {(𝑠, 𝑠′)||𝑙| |𝑙′|}. 

 𝑉5 = {(𝑠, 𝑠′)|𝑧𝑧′}. 

 𝑉6 = {(𝑠, 𝑠′)|𝑘 − 1000 × 𝑡 = 𝑘′ − 1000 × 𝑡′}. 

 𝑉7 = {(𝑠, 𝑠′)|𝑙 × (1 + 𝑏)−𝑧 = 𝑙′ × (1 + 𝑏′)−𝑧′}. 

 𝑉8 = {(𝑠, 𝑠′)|𝑙 × (1 + 𝑏)−
𝑘

1000 = 𝑙′ × (1 + 𝑏′)−
𝑘′

1000}. 

 𝑉9 = {(𝑠, 𝑠′)|𝑙 × (1 + 𝑏)
−

𝑧

(1+𝑎) = 𝑙′ × (1 + 𝑏′)
−

𝑧′

(1+𝑎)}. 

 𝑉10 = {(𝑠, 𝑠′)|𝑧 − (1 + 𝑎) × 𝑡 = 𝑧′ − (1 + 𝑎) × 𝑡′}. 

 𝑉11 = {(𝑠, 𝑠′)|1000 × 𝑧 − (1 + 𝑎) × 𝑘 = 1000 × 𝑧′ −
(1 + 𝑎) × 𝑘′}. 

 𝑉12 = {(𝑠, 𝑠′)|𝑚 +
𝑙

𝑏
= 𝑚′ +

𝑙′

𝑏
}. 

 𝑉13 = {(𝑠, 𝑠′)|𝑤 + 𝑧 ×
𝑧−1−𝑎

2×(1+𝑎)
= 𝑤′ + 𝑧′ ×

𝑧′−1−𝑎

2×(1+𝑎)
}. 

 𝑉14 = {(𝑠, 𝑠′)|1000 × 𝑛 − 𝑘 × 𝑥 = 1000 × 𝑛′ − 𝑘′ × 𝑥′}. 

 

We consider the following specification 𝑅 on space 𝑆: 

𝑅 = {(𝑠, 𝑠′)|𝑧 > 0  𝑥 = 𝑥′ 𝑤′

= 𝑤 − 𝑧 ×
1 − (1 + 𝑎)𝑡′−𝑡

𝑎
  𝑚′ 0  𝑙′0} 



We review all the invariant relation for compatibility with 
respect to 𝑅 ; this is done using Mathematica (© Wolfram 
Research), by writing a logical formula that corresponds to the 
condition of compatibility discussed above.  We find: 

Compatible Incompatible 

𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉11, 𝑉14 𝑉7, 𝑉8, 𝑉9, 𝑉10, 𝑉12, 𝑉13, 

 

We select invariant relation 𝑉7  for remediation; the variables 
that appear in this relation are 𝑙  and 𝑧 .  We compute the 
condition of compatibility preservation, and we find: 

|𝑙|𝑙′   𝑧𝑧′. 

We focus on variable 𝑧 , consider the statement where this 
variable is modified, and consider alternative statements that 
satisfy the constraint.  For each alternative, we recompute the 
new invariant relation that stems from the new statement and 
check for compatibility.  We find the following substitute: 

 z=(1+a)*z; 

Hence the new program becomes: 

P2: while (abs(r-p)>upsilon) 

       {t=t+1;n=n+x;m=m-l;l=(1+b)*l; 

        k=k+1000;y=n+k;w=w+z;z=(1+a)*z; 

        v=w+k;r=(v-y)/y;u=(m-n)/n;d=r-u;} 

We do not know whether this program is correct, but we know 
that it is more-correct than the original program; if we test it 
and it fails, it will not be because our fault removal was wrong; 
rather it will be because it has other faults.  When we run the 
invariant relations generator on this program, we find the 
following list. 

 𝑉1 = {(𝑠, 𝑠′)| 𝑥 = 𝑥′}. 

 𝑉2 = {(𝑠, 𝑠′)| 𝑡𝑡′}. 

 𝑉3 = {(𝑠, 𝑠′)| 𝑘𝑘′}. 

 𝑉4 = {(𝑠, 𝑠′)| |𝑙||𝑙′|}. 

 𝑉5 = {(𝑠, 𝑠′)| 𝑧𝑧′}. 

 𝑉6 = {(𝑠, 𝑠′)| 𝑘 − 1000 × 𝑡 = 𝑘′ − 1000 × 𝑡′}. 

 𝑉7 = {(𝑠, 𝑠′)| 𝑙𝑙′}. 

 𝑉8 = {(𝑠, 𝑠′)| 1000 × 𝑙 − (1 + 𝑏) × 𝑘 = 1000 × 𝑙′ −
(1 + 𝑏) × 𝑘′}. 

 𝑉9 = {(𝑠, 𝑠′)| (1 + 𝑏) × 𝑧 − (1 + 𝑎) × 𝑙 = (1 + 𝑏) × 𝑧′ −
(1 + 𝑎) × 𝑙′}. 

 𝑉10 = {(𝑠, 𝑠′)| 1000 × 𝑧 − (1 + 𝑎) × 𝑘 = 1000 × 𝑧′ −
(1 + 𝑎) × 𝑘′}. 

 𝑉11 = {(𝑠, 𝑠′)| 1000 × 𝑛 − 𝑥 × 𝑘 = 1000 × 𝑛′ − 𝑥′ × 𝑘′}. 

 𝑉12 = {(𝑠, 𝑠′)| (1 + 𝑏) × 𝑛 − 𝑥 × 𝑙 = (1 + 𝑏) × 𝑛′ − 𝑥′ ×
𝑙′}. 

 𝑉13 = {(𝑠, 𝑠′)| 𝑧 × (1 + 𝑎)−𝑡 =  𝑧′ × (1 + 𝑎)−𝑡′}. 

 𝑉14 = {(𝑠, 𝑠′)| 𝑧 × (1 + 𝑎)−𝑘/1000 =  𝑧′ × (1 +

𝑎)−𝑘′/1000}. 

 𝑉15 = {(𝑠, 𝑠′)| 𝑤 −
𝑧

𝑎
= 𝑤′ −

𝑧′

𝑎
}. 

 𝑉16 = {(𝑠, 𝑠′)|𝑚 +
𝑙

𝑏
= 𝑚′ +

𝑙′

𝑎
}. 

Checking these invariant relations for compatibility against 
specification 𝑅, we find the following clasification: 

Compatible Incom-
patible 

𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉7, 𝑉8, 𝑉9 𝑉10, 𝑉11, 𝑉12, 𝑉13, 𝑉14, 𝑉15 𝑉16 

 

Note that the same fault removal can turn several incompatible 
relations into compatible relations; also, when we change a 
statement in a loop, our invariant relations generator may have 
to use different code patterns to generate invariant relations.   

Relation   𝑉16 refers to variables 𝑙 and 𝑚, hence these are the 
variables we may modify.   We generate the condition on 
variables 𝑙 and 𝑚 under which modification of these variables 
does not affect compatible invariant relations, and find the 
following: 

(𝑙 = 0𝑙′ = 0)   (𝑙𝑙′  (𝑙0  𝑙 + 𝑙′0)). 

Looking at the statement that updates variable 𝑙, we find that it 
meets (the second clause of) this condition as it is; hence if we 
do not change it, we are assured not to affect any compatible 
invariant relation.  We focus on variable 𝑚, and we suggest to 
change statement (m=m-l)  into (m=m+l).  This yields the 

following program: 

P3: while (abs(r-p)>upsilon) 

       {t=t+1;n=n+x;m=m+l;l=(1+b)*l; 

        k=k+1000;y=n+k;w=w+z;z=(1+a)*z; 

        v=w+k;r=(v-y)/y;u=(m-n)/n;d=r-u;} 

We compute the invariant relations of this program and find: 

 𝑉1 = {(𝑠, 𝑠′)| 𝑥 = 𝑥′}. 

 𝑉2 = {(𝑠, 𝑠′)| 𝑡𝑡′}. 

 𝑉3 = {(𝑠, 𝑠′)| 𝑘𝑘′}. 

 𝑉4 = {(𝑠, 𝑠′)| |𝑙||𝑙′|}. 

 𝑉5 = {(𝑠, 𝑠′)| 𝑧𝑧′}. 

 𝑉6 = {(𝑠, 𝑠′)| 𝑘 − 1000 × 𝑡 = 𝑘′ − 1000 × 𝑡′}. 

 𝑉7 = {(𝑠, 𝑠′)| 𝑙𝑙′}. 

 𝑉8 = {(𝑠, 𝑠′)| 1000 × 𝑙 − (1 + 𝑏) × 𝑘 = 1000 × 𝑙′ −
(1 + 𝑏) × 𝑘′}. 

 𝑉9 = {(𝑠, 𝑠′)| (1 + 𝑏) × 𝑧 − (1 + 𝑎) × 𝑙 = (1 + 𝑏) × 𝑧′ −
(1 + 𝑎) × 𝑙′}. 

 𝑉10 = {(𝑠, 𝑠′)| 1000 × 𝑧 − (1 + 𝑎) × 𝑘 = 1000 × 𝑧′ −
(1 + 𝑎) × 𝑘′}. 



 𝑉11 = {(𝑠, 𝑠′)| 1000 × 𝑛 − 𝑥 × 𝑘 = 1000 × 𝑛′ − 𝑥′ × 𝑘′}. 

 𝑉12 = {(𝑠, 𝑠′)| (1 + 𝑏) × 𝑛 − 𝑥 × 𝑙 = (1 + 𝑏) × 𝑛′ − 𝑥′ ×
𝑙′}. 

 𝑉13 = {(𝑠, 𝑠′)| 𝑧 × (1 + 𝑎)−𝑡 =  𝑧′ × (1 + 𝑎)−𝑡′}. 

 𝑉14 = {(𝑠, 𝑠′)| 𝑧 × (1 + 𝑎)−𝑘/1000 =  𝑧′ × (1 +

𝑎)−𝑘′/1000}. 

 𝑉15 = {(𝑠, 𝑠′)| 𝑤 −
𝑧

𝑎
= 𝑤′ −

𝑧′

𝑎
}. 

 𝑉16 = {(𝑠, 𝑠′)|𝑚 −
𝑙

𝑏
= 𝑚′ −

𝑙′

𝑏
}. 

When we check these invariant relations against specification 
R for compatibility, we find that they are all compatible.  

 

Compatible 

In
co

m
-

p
a

tib
le 

𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉7, 𝑉8, 𝑉9 𝑉10, 𝑉11, 𝑉12, 𝑉13, 𝑉14, 𝑉15, 𝑉16  

 

This does not mean that program p3 is correct.   All it means is 
that program p3 is more-correct than programs p2 and p1; the 
absence of incompatible relations is not sufficient to ensure 
correctness; all it means is that we did not prove the program 
incorrect).   

We do find that program p3 is correct with respect to R, by 
virtue of the proposition of sufficient correctness, because we 
find that relation V, the intersection of all the invariant relations 
of p3, satisfies the sufficiency condition:  

𝑅𝑇̅𝑉𝐿(𝑉𝑅𝑇̂̅) = 𝑉. 

This has been proved using Mathematica; details of the proof 
are given at http://selab.njit.edu/icst2016proof. 

 

E. Initialized While Loops 

As a second illustrative example, we consider the following 
program that purports to compute Fibonacci numbers; its space 
is defined by the following declarations: 

 const int cN = …; 

 int i, j, fb, nc, np; 

The source code of the loop 𝑤 is: 

 while (j!=cN) 

     {j=j+i;  nc=fb;  i=i+1; 

      fb=np+nc;  np=nc; j=j-i;} 

Deployment of the invariant relations generator produces the 
following invriant relations (where 𝐹  is the Fibonacci 
function): 

 𝑉1 = {(𝑠, 𝑠′)| 𝑖 ≤ 𝑖′}. 

 𝑉2 = {(𝑠, 𝑠′)|𝑗 ≥ 𝑗′}. 

 𝑉3 = {(𝑠, 𝑠′)|𝑖 + 𝑗 = 𝑖′ + 𝑗′}. 

 𝑉4 = {(𝑠, 𝑠′)|𝑛𝑝′ = 𝑓𝑏 × 𝐹(𝑖′ − 𝑖) + 𝑛𝑝 × 𝐹(𝑖′ − 𝑖 − 1)}. 

 𝑉5 = {(𝑠, 𝑠′)|𝑓𝑏′ = 𝑓𝑏 × 𝐹(𝑖′ − 𝑖 + 1) + 𝑛𝑝 × 𝐹(𝑖′ − 𝑖)}. 

 

We consider the following specification: 

𝑅 = {(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁  𝑓𝑏′ = 𝐹(𝑗 + 2 − 𝑐𝑁)    

    𝑛𝑐′ = 𝐹(𝑗 + 1 − 𝑐𝑁)  𝑛𝑝′ = 𝐹(𝑗 + 1 − 𝑐𝑁)   

𝑖′ = 𝑖 + 𝑗   𝑗′ = 𝑐𝑁}. 

In the table below, we show how the invariant relations listed 
above are classified between compatible relations and 
incompatible relations with respect to specification 𝑅. 

Compatible Incompatible 

𝑉1, 𝑉2, 𝑉3,  𝑉4, 𝑉5 

 

Because we have found invariant relations that are 
incompatible with specification R, we infer that this loop is 
incorrect with respect to R; hence there is a fault. 

A theorem by H.D. Mills [4] provides a condition under which 
a function 𝑊 can be computed by an uninitialized while loop: 

(𝐿𝑊 ∩ 𝐼)𝑊 = (𝐿𝑊 ∩ 𝐼). 

In [5] we generalize this result to give a condition on a relation 
𝑅 to admit an uninitialized  while loop as a correct program 
(i.e. a condition under which specification R can be refined by 
a function W that satisfies Mills’ condition, above): 

𝑅𝐿   𝑅(𝑅 ∩ 𝐼)𝐿. 

Interestingly, we find that our relation 𝑅 given above does not 
satisfy this condition.  Indeed, we find: 

𝑅𝐿 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁}. 

On the other hand, we find 

𝑅 ∩ 𝐼 = {(𝑠, 𝑠′)| 𝑠′ = 𝑠   𝑗 > 𝑐𝑁  𝑓𝑏′

= 𝐹(𝑗 + 2 − 𝑐𝑁)   𝑛𝑐′

= 𝐹(𝑗 + 1 − 𝑐𝑁)  𝑛𝑝′

= 𝐹(𝑗 + 1 − 𝑐𝑁)  𝑖′ = 𝑖 + 𝑗   𝑗′ = 𝑐𝑁}. 

This relation is empty, since it is a subset of  

{(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁   𝑗 = 𝑐𝑁}, 

which is itself empty.  Hence 𝑅(𝑅 ∩ 𝐼)𝐿  is empty, and the 
condition 

𝑅𝐿   𝑅(𝑅 ∩ 𝐼)𝐿 

does not hold.  So that specification R cannot be satisfied by an 
unitialized while loop; in other words, even though 𝑤  is 
incorrect with respect to 𝑅  (as shown by the existence of 
incompatible relations), there is nothing we can do to 𝑤  to 
correct it; instead, any correction must be outside the loop, say 
in the initialization.  In light of this example, we may want to 



refine the algorithm discussed above (in section IV-C) by 
adding a step where we check the  condition (𝑅𝐿   𝑅(𝑅 ∩
𝐼)𝐿 ) before attempting to remedy the loop; indeed, if this 
condition is not satisfied, then no loop can satsify specification 
𝑅, hence the focus of fault removal ought to divert away from 
the loop (e.g. towards its initialization). 

To get some guidance for how to initialize this loop, we 
compute its competence domain with respect to 𝑅 .  To this 
effect, we calculate the function of 𝑤  from its invariant 
relations using a formula provided by [3]; this calculation is 
done automatically, using the computer algebra program 
Mathematica (© Wolfram Research).  We find: 

𝑊 = {(𝑠, 𝑠′)| 𝑗  𝑐𝑁   𝑖′ = 𝑖 + 𝑗 − 𝑐𝑁    𝑗′ = 𝑐𝑁    𝑛𝑝′

= 𝑛𝑝 × 𝐹(𝑗 − 𝑐𝑁 − 1) + 𝑓𝑏
× 𝐹(𝑗 − 𝑐𝑁) 𝑛𝑐′ = 𝑛𝑝′  𝑓𝑏′

= 𝑛𝑝 × 𝐹(𝑗 − 𝑐𝑁) + 𝑓𝑏 × 𝐹(𝑗 − 𝑐𝑁 + 1)}. 

The competence domain of w can be computed in Mathematica 
by simplifying the following logical expression (where each 
relation is represented by its characteristic predicate): 

∃𝑠′:  𝑅(𝑠, 𝑠′)   𝑊(𝑠, 𝑠′). 

We find: 

𝐶𝐷 = {(𝑠, 𝑠′)|  𝑗 > 𝑐𝑁    ((𝑓𝑏 = 1𝑛𝑝

= 1)   (𝑓𝑏 × (1 + √5) + 2 × 𝑛𝑝

= 3 + √5))}. 

Because variables fb and np are of type integer, this 
competence domain can be written simply as: 

𝐶𝐷 = {(𝑠, 𝑠′)|  𝑗 > 𝑐𝑁    𝑓𝑏 = 1   𝑛𝑝 = 1}. 

In order for 𝑤 to behave according to specification 𝑅, variables 
𝑓𝑏  and 𝑛𝑝  have to be 1; this suggests that the required 
initialization is 

fb=1; np=1; 

We find (as shown below) that these initializations ensure that 
the program is now correct with respect to 𝑅.  Interestingly, we 
also find that doing only one of these two initializations 
produces more-correct (albeit not absolutely correct) programs, 
as we show below. 

Let 𝑝1  be the program obtained from 𝑤  by adding the 
initialization  fb=1;.  We find 

𝑃1 = {(𝑠, 𝑠′)| 𝑗𝑐𝑁    𝑖′ = 𝑖 + 𝑗 − 𝑐𝑁   𝑗′ = 𝑐𝑁  𝑛𝑝′ =
𝑛𝑝 × 𝐹(𝑗 − 𝑐𝑁 − 1) + 𝐹(𝑗 − 𝑐𝑁)  𝑓𝑏′ = 𝑛𝑝 × 𝐹(𝑗 − 𝑐𝑁) +
𝐹(𝑗 − 𝑐𝑁 + 1)   𝑛𝑐′ = 𝑛𝑝′}, 

From which we infer the competence domain of 𝑝1 as: 

𝐶𝐷1 = {(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁    𝑛𝑝 = 1}. 

Likewise, we compute the function then competence domain of 
𝑝2, obtained by adding np=1; to the while loop, and we find: 

𝑃2 = {(𝑠, 𝑠′)| 𝑗𝑐𝑁    𝑖′ = 𝑖 + 𝑗 − 𝑐𝑁   𝑗′ = 𝑐𝑁  𝑛𝑝′ =
𝐹(𝑗 − 𝑐𝑁 − 1) + 𝑓𝑏 × 𝐹(𝑗 − 𝑐𝑁)  𝑓𝑏′ = 𝐹(𝑗 − 𝑐𝑁) + 𝑓𝑏 ×
𝐹(𝑗 − 𝑐𝑁 + 1)   𝑛𝑐′ = 𝑛𝑝′}, 

Whence, 

𝐶𝐷2 = {(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁   𝑓𝑏 = 1}. 

Finally, we compute the function and competence domain of 
the program p3 obtained from w by adding the two 
initializations, fb=1; np=1;, and we find 

𝑃3 = {(𝑠, 𝑠′)| 𝑗𝑐𝑁    𝑖′ = 𝑖 + 𝑗 − 𝑐𝑁   𝑗′ = 𝑐𝑁  𝑛𝑝′ =
𝐹(𝑗 − 𝑐𝑁 + 1)  𝑓𝑏′ = 𝐹(𝑗 − 𝑐𝑁 + 2)   𝑛𝑐′ = 𝑛𝑝′}, 

Whence 

𝐶𝐷3 = {(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁 }. 

Hence to summarize: 

 𝐶𝐷 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁  𝑓𝑏 = 1  𝑛𝑝 = 1}. 

 𝐶𝐷1 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁   𝑛𝑝 = 1}. 

 𝐶𝐷2 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁  𝑓𝑏 = 1 }. 

 𝐶𝐷3 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁 }. 

 𝑅𝐿 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁 }. 

This is reflected in the following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Ranking Candidates by Relative Correctness 

 

V. CONCLUDING REMARKS 

In this section, we summarize our main contributions in this 
paper, discuss related work, then give a candid assessment of 
this work and its future prospects as we envision them. 

A. Summary 

In this paper we argue that it is possible to remove faults from 

a program and build an argument to the effect that the 

program is now better for it.  We argue that relying 

exclusively on testing to ensure fault removal carries some 

inherent risks, especially when each fault is treated as if it 

were the last fault of the program.  To support our argument, 

we introduce the concept of relative correctness, i.e. the 

property of a program to be more-correct than another with 

𝑤 

𝑝2 𝑝1 

𝑝3 



respect to a specification, and show how one can conceivably 

prove relative correctness without getting involved in all the 

minute details of the two programs in question. 

 

Specifically, we focus on a framework based on invariant 

relations, which allows us to support all the phases of fault 

removal, including: 

 Evidence of incorrectness (hence the need to locate and 

remove a fault). 

 Localisation of the fault, by identifying the variables 

whose assignments may have to be modified. 

 Guidance in how to change the code, by formulating a 

constraint that ensures correctness enhancement. 

 Proof that the fault has indeed been removed, i.e. that the 

program will experience no regression in its behavior. 

Even though we do not, yet, have an integrated tool that 

supports this work, many of its complex steps (such as 

generation of invariant relations, verification of logical 

properties) are automated.  The generation of invariant 

relations is discussed in other publications, including [3] and 

an online description of the prototype tool can be found at 

https://selab.njit.edu/tools/fxloop.php.  Invariant relations are 

generated from a denotational semantic representation of the 

loop, by matching this representation against pre-stored code 

patterns and instantiating the corresponding invariant relation 

patterns.  As for verifying logical properties that arise in our 

analysis, we typically use Mathematica. 

 

B. Related Work 

In [6] Logozzo et al. introduce a technique for extracting and 

maintaining semantic information across program versions:  

specifically, they consider an original program 𝑃  and a 

variation (version) 𝑃’ of 𝑃, and they explore the question of 

extracting semantic information from 𝑃, using it to instrument 

𝑃′ (by means of executable assertions), then pondering what 

semantic guarantees they can infer about the instrumented 

version of 𝑃’.  The focus of their analysis is the condition 

under which programs  𝑃’  and  𝑃 can execute without causing 

an abort (due to attempting an illegal operation), which they 

approximate by sufficient conditions and necessary 

conditions. They implement their approach in a system called 

VMV (Verification Modulo Versions) whose goal is to exploit 

semantic information about 𝑃  in the  analysis of 𝑃’, and to 

ensure that the transition from 𝑃  to 𝑃’  happens without 

regression; in that case, they say that 𝑃’ is correct relative to 

𝑃. The definition of relative correctness of Logozzo et al [6] is 

different from ours, for several reasons:  whereas [6] talk 

about relative correctness between an original program and a 

subsequent version in the context of adaptive maintenance 

(where 𝑃  and 𝑃′ may be subject to distinct requirements), we 

talk about relative correctness between an original (faulty) 

software product  and a revised version of the program 

(possibly still faulty yet more-correct) in the context of 

corrective maintenance with respect to a fixed requirements 

specification;  whereas [6] use a set of assertions inserted 

throughout the program as a specification, we use a relation 

that maps initial states to final states to specify the standards 

against which absolute correctness and relative correctness are 

defined; whereas Logozzo et al.  represent program executions 

by execution traces (snapshots of the program state at 

assertion sites), we represent program executions by functions 

mapping initial states into final states; finally, whereas 

Logozzo et al define a successful execution as a trace that 

satisfies all the relevant assertions, we define  it as an initial 

state/ final state pair that falls within the relational 

specification. 

 

In [7] Lahiri et al. introduce a technique called Differential 

Assertion Checking for verifying the relative correctness of a 

program with respect to a previous version of the program.  

Lahiri et al. explore applications of this technique as a tradeoff 

between soundness (which they concede) and lower costs 

(which they hope to achieve).  Like the approach of Logozzo 

et al. [6] (from the same team), the work of Lahiri uses 

executable assertions as specifications, represents executions 

by  traces, defines successful executions as traces that satisfy 

all the executable assertions, and targets abort-freedom as the 

main focus of the executable assertions.  Also, they define 

relative correctness between programs 𝑃  and 𝑃’  as the 

property that 𝑃’  has a larger set of successful traces and a 

smallest set of unsuccessful traces than 𝑃; and they introduce 

relative specifications as specifications that capture 

functionality of 𝑃’ that 𝑃 does not have.  By contrast, we use 

input/ output (or initial state/ final state) relations as 

specifications, we represent program executions by functions 

from initial states to final states, we characterize correct 

executions by initial state/ final state pairs that belong to the 

specification, and we make no distinction between abort-

freedom (a.k.a. safety, in [7]) and normal functional 

properties. Indeed, for us the function of a program is the 

function that the program defines between its initial states and 

its final states; the domain of this function is the set of states 

for which execution terminates normally and returns a well-

defined final state. Hence execution of the program on a state 

𝑠  is abort free if and only if the state is in the domain of the 

program function; the domain of the program function is part 

of the function rather than being an orthogonal attribute; hence 

we view abort-freedom as a special form of functional 

attribute, rather than being an orthogonal attribute. Another 

important distinction with [7] is that we do not view relative 

correctness as a compromise that we accept as a substitute for 

absolute correctness; rather we argue that in many cases, we 

ought to test programs for relative correctness rather than 

absolute correctness, regardless of cost. In other words, 

whereas Lahiri et al. argue in favor of relative correctness on 

the grounds that it optimizes a quality vs. cost ratio, we argue 

in favor on the grounds that it optimizes quality.  

 

In [8], Logozzo and Ball introduce a definition of relative 

correctness whereby a program 𝑃’ is correct relative to 𝑃 (an 

improvement over 𝑃 if and only if 𝑃′ has more good traces and 

https://selab.njit.edu/tools/fxloop.php


fewer bad traces than 𝑃   Programs are modeled with trace 

semantics, and execution traces are compared in terms of 

executable assertions inserted into 𝑃 and 𝑃′; in order for the 

comparison to make sense, programs 𝑃 and 𝑃′ have to have 

the same (or similar) structure and/or there must be a mapping 

from traces of 𝑃 to traces of 𝑃′.  When 𝑃′ is obtained from 𝑃 

by a transformation, and when 𝑃′ is provably correct relative 

to 𝑃, the transformation in question is called a verified repair. 

Logozzo and Ball introduce an algorithm that specializes in 

deriving program repairs from a predefined catalog that is 

targeted to specific program constructs, such as:  contracts, 

initializations, guards, floating point comparisons, etc.  Like 

the work cited above  [6], [7],  Logozzo and Ball model 

programs by execution traces and distinguish between two 

types of  failures:  contract violations, when functional 

properties are not satisfied; and run-time errors, when the 

execution causes an abort; for the reasons we discuss above, 

we do not make this distinction, and model the two aspects 

with the same relational framework.  Logozzo and Ball deploy 

their approach in an automated tool based on the static 

analyzer cccheck, and assess their tool for effectiveness and 

efficiency. 

  

In [9] Nguyen et al. present an automated repair method based 

on symbolic execution,   constraint solving, and program 

synthesis; they call their method SemFix, on the grounds that 

it performs program repair by means of semantic analysis.   

This method combines three techniques:  fault isolation by 

means of statistical analysis of the possible suspect statements; 

statement-level specification inference, whereby a local 

specification is inferred from the global specification and the 

product structure; and program synthesis, whereby a corrected 

statement is computed from the local specification inferred in 

the previous step.  The method is organized in such a way that 

program synthesis is modeled as a search problem under 

constraints, and possible correct statements are  inspected in 

the order of increasing complexity.  When programs are 

repaired by SemFix, they are tested for (absolute) correctness 

against some predefined test data suite; as we argue 

throughout this paper, it is not sensible to test a program for 

absolute correctness after a repair, unless we have reason to 

believe that the fault we have just repaired is the last fault of 

the program (how do we ever know that?).  By advocating to 

test for relative correctness, we enable the tester to focus on 

one fault at a time, and ensure that other faults do not interfere 

with our assessment of whether the fault under consideration 

has or has not been repaired adequately. 

 

In [10], Weimer et al. discuss an automated program repair 

method that takes as input a faulty program, along with a set 

of positive tests (i.e. test data on which the program is known 

to perform correctly) and a set of negative tests (i.e. test data 

on which the program is known to fail) and returns a set of 

possible patches.  The proposed method proceeds by keeping 

track of the execution paths that are visited by successful 

executions and those that are visited by unsuccessful 

executions, and  using this information to focus the search for 

repairs on those statements that appear in the latter paths and 

not in the former paths.  Mutation operators are applied to 

these statements and the results are tested again against the 

positive and negative test data to narrow the set of eligible  

mutants. 

 

Whereas the definitions of relative correctness, faults and fault 

removal are introduced in [11], the potential impact of these 

concept on software engineering is discussed in [12]. 

 

C. Assessment and Prospects 

This work is clearly in its infancy; it includes the definition of a 
new concept, the premise that this concept can be used for a 
provably monotonic fault removal process, and some initial 
results that enable us to apply this concept with some 
automated support, and without getting involved into the 
minute functional details of the program and the specification. 

The question that arises with this type of work is, of course, 
whether it scales up to programs of realistic size and 
complexity.  We argue that relative correctness scales up to the 
same degree as absolute correctness.  The fact that it cannot be 
readily employed to software products of arbitrary size and 
complexity does not make it any less worthy of investigation, 
just as the same constraints do not make absolute correctness 
less worthy of study; it is still useful as a logical reasoning 
framework; and it can be applied in practice with the proper 
balance of formality, expressiveness, and usability, and with 
judicious automated support where possible.  Also, we argue 
that in software quality assurance as in other endeavors, the 
law of diminishing returns advocates the use of diverse 
methods and tools to maximize impact; the use of relative 
correctness to support fault diagnosis and removal stands to 
play an important role as a tool in the engineer’s toolbox. 

We envision to continue exploring applications of relative 
correctness in fault removal, to enhance and integrate our tool 
support, and to consider other results (theorems) that enable us 
to streamline the verification of relative correctness. 
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