
Debugging Without Testing

Wided Ghardallou

University of Tunis, El Manar, Tunis, Tunisia

wided.ghardallou@gmail.com

Nafi Diallo and Ali Mili

CCS, NJIT, Newark NJ 07102-1982

ncd8@njit.edu, mili@njit.edu

Marcelo F. Frias

ITBA, Buenos Aires, Argentina

mffrias@gmail.com

Abstract—It is so inconceivable to debug a program without

testing it that these two words are used nearly interchangeably.

Yet we argue that using the concept of relative correctness we

can indeed remove a fault from a program and prove that the

fault has been removed, by proving that the new program is

more correct than the original. This is a departure from the

traditional roles of proving and testing methods, whereby static

proof methods are applied to a correct program to prove its

correctness, and dynamic testing methods are applied to an

incorrect program to expose its faults.

Keywords—debugging; testing; correctness; relative

correctness; faults; fault removal.

I. INTRODUCTION

In (Ali Mili, 2014) Mili et al introduce a definition of
relative correctness, i.e. the property of a program to be more-
correct than another with respect to a specification; to contrast
relative correctness with the traditional definition of program
correctness, we may refer to the latter as absolute correctness.
Given a specification, we can use absolute correctness to
divide candidate programs into two classes: correct programs,
and incorrect programs. But by using relative correctness, we
can arrange candidate programs according to a rich partial
ordering structure, rather than simply dividing them into two
classes. Also, whereas traditionally the division of labor
between testing methods and proving methods is clear cut,
whereby proving methods are deployed on correct programs to
prove their correctness and testing methods are deployed on
incorrect programs to expose their faults, relative correctness
enables us to straddle this dividing line. Specifically, we can
use relative correctness to prove that a program, though it may
be incorrect, is still more-correct than another. This approach
can usefully complement testing activities, by virtue of the law
of diminishing returns.

An obvious application of this concept is in fault removal:
when we remove a fault from a program, we have no reason to
expect the new program to be correct, since it may have other
hidden faults; but we ought to expect it to be more-correct than
the original, since that is the only condition under which we
may consider that the fault has indeed been removed. In this
paper, we explore the possibility of removing faults by static
analysis of the program’s source code, and proving that the
fault has effectively been removed by proving that the new
program is more-correct than the original. Broadly speaking,
this method has the same advantages and disadvantages as
traditional methods for proving correctness by static analysis:

namely that it offers the confidence and certainty of formally
provable results, at the cost of mathematical formalisms and
limited scalability. At the same time as we present the method,
we also discuss means to capitalize on its advantages while
mitigating its disadvantages.

In section II, we introduce some elements of relational
mathematics that we use throughout the paper to formulate our
results; we use this background in section III to introduce the
concept of relative correctness and in section IV to discuss how
relative correctness can be used to provably remove faults in
programs. We summarize our work, compare it to related
work and sketch future research directions in sevtion V.

II. RELATIONAL MATHEMATICS

We assume the reader familiar with elementary relational

concepts (Chris Brink, 1997); the goal of this section is

merely to introduce notations and definitions that we use

throughout the paper. Given a set 𝑆, we let a relation 𝑅 on 𝑆

be a subset of the Cartesian product 𝑆 × 𝑆. Elements of a

relation are usually denoted by pairs of the form (𝑠, 𝑠’).
Constant relations on S include the empty relation (∅), the

identity relation (𝐼) and the universal relation (𝐿). Operations

on relations include the usual set theoretic operations (∪,∩

,/, ̅), as well as the relational product, which we merely

represent by concatenating the operands (as we do in

arithmetic). Given a relation R on S, we let the reverse of R

be the relation denoted by 𝑅̂ (or 𝑅^) and defined by 𝑅̂ =
{(𝑠, 𝑠′)|(𝑠′, 𝑠) ∈ 𝑅}. We use the notation 𝑅𝑖 , where 𝑅 is a

relation and 𝑖 is a natural number to denote the product of 𝑅

by itself 𝑖 times if 𝑖 > 0, and 𝐼 if 𝑖 = 0. We let the transitive

closure of relation R be the relation denoted by 𝑅+ and

defined by 𝑅+ = {(𝑠, 𝑠′)|∃𝑖 > 0: (𝑠, 𝑠′) ∈ 𝑅𝑖}, and we let the

reflexive transitive closure of 𝑅 be denoted by 𝑅∗ and defined

by: 𝑅∗ = 𝐼 ∪ 𝑅+.

We say that a relation 𝑅 is a vector if and only if 𝑅𝐿 = 𝑅.

Vectors are relations of the form 𝑅 = 𝐴 × 𝑆, for some subset

𝐴 of 𝑆. We use vectors as a relational representations of sets;

hence for example, we represent the domain of relation 𝑅 by

the vector 𝑅𝐿. We say that relation 𝑅 refines relation 𝑅’ if and

only if: 𝑅𝐿 ∩ 𝑅′𝐿 ∩ (𝑅 ∪ 𝑅′) = 𝑅′. We say that relation 𝑅 is

reflexive if and only if 𝐼𝑅, that relation 𝑅 is symmetric if

and only if 𝑅 = 𝑅̂, and that relation 𝑅 is transitive if and only

if 𝑅𝑅𝑅.

mailto:wided.ghardallou@gmail.com
mailto:ncd8@njit.edu
mailto:mili@njit.edu
mailto:mffrias@gmail.com

Given a program 𝑝 on variables 𝑥, 𝑦, … 𝑧 of types

𝑋, 𝑌, … 𝑍; we let the space of 𝑝 be defined as the Cartesian

product 𝑆 = 𝑋 × 𝑌 × … 𝑍. We usually use the name 𝑠 as an

element of 𝑆, to stand for the aggregate 𝑥, 𝑦, . . 𝑧. Program 𝑝

defines a function from its initial states to its final states,

which we represent by upper case 𝑃. Specifications on space

𝑆 are relations on 𝑆, and we say that a program 𝑝 is correct

with respect to a specification 𝑅 if and only if 𝑃 refines 𝑅 .

We admit without proof that a program 𝑝 is correct (or, for

contrast, absolutely correct) with respect to a specification 𝑅

if and only if (𝑅 ∩ 𝑃)𝐿 = 𝑅𝐿.

III. RELATIVE CORRECTNESS

A. Deterministic Programs

Given a specification 𝑅 on space 𝑆 and a program 𝑝 on space

𝑆, we find that the domain of (𝑅 ∩ 𝑃) is the set of initial

states for which program 𝑝 behaves according to specification

𝑅; we refer to this set as the competence domain of 𝑝 with

respect to 𝑅. We say that a program 𝑝’ is more-correct with

respect to 𝑅 than a program 𝑝 if and only if the competence

domain of 𝑝’ is a superset of the competence domain of 𝑝, i.e.

(𝑅 ∩ 𝑃′)𝐿  (𝑅 ∩ 𝑃)𝐿.
By construction, the competence domain of any candidate

program with respect to a specification 𝑅 is necessarily a

subset of (or equal to) 𝑅𝐿; according to the discussion of the

previous section, when it equals 𝑅𝐿, the program is correct

with respect to 𝑅. Hence relative correctness culminates in

absolute correctness. To illustrate relative correctness, and

contrast it to absolute correctness, we present a simple

example of a specification and ten candidate programs, and

show how these ten candidates are ranked by relative

correctness, while absolute correctness merely divides them

into two broad classes. We consider the following

specification R on space S of the natural numbers:

𝑅 = {(𝑥, 𝑥′)|𝑥2 ≤ 𝑥′ ≤ 𝑥3},
and we consider the following candidate programs; for each

program, we present the program function, then the

competence domain with respect to 𝑅.

0. p0: {abort}; 𝑃0 = ∅. 𝐶𝐷0 = ∅.
1. p1: {x=0;};

𝑃1 = {(𝑥, 𝑥′)| 𝑥′ = 0}. 𝐶𝐷1 = {0}.
2. p2: {x=1;};

𝑃2 = {(𝑥, 𝑥′)| 𝑥′ = 1}. 𝐶𝐷2 = {1}.
3. p3: {x=2*x^3-8} ;

𝑃3 = {(𝑥, 𝑥′)| 𝑥′ = 2𝑥3 − 8}. 𝐶𝐷3 = {2}.
4. p4: {skip};

𝑃4 = {(𝑥, 𝑥′)| 𝑥′ = 𝑥}. 𝐶𝐷4 = {0,1}.
5. p5: {x=2*x^3-3*x^2+2} ; 𝑃5=

{(𝑥, 𝑥′)| 𝑥′ = 2𝑥3 − 3𝑥2 + 2}.𝐶𝐷5 = {1,2}.

6. p6: {x=x^4-5*x};

𝑃6 = {(𝑥, 𝑥′)| 𝑥′ = 𝑥4 − 5𝑥}. 𝐶𝐷6 = {0,2}.

7. p7: {x=x^2};

𝑃7 = {(𝑥, 𝑥′)| 𝑥′ = 𝑥2}. 𝐶𝐷7 = 𝑆.
8. p8: {x=x^3} ;

𝑃8 = {(𝑥, 𝑥′)| 𝑥′ = 𝑥3}. 𝐶𝐷8 = 𝑆.
9. p9: {x=(x^2+x^3)/2} ;

𝑃9 = {(𝑥, 𝑥′)| 𝑥′ =
𝑥2+𝑥3

2
}. 𝐶𝐷9 = 𝑆.

The following figure shows the graph of the relative

correctness relationships between these programs; note that

while absolute correctness divides this set of candidates into

two classes (correct vs incorrect), relative correctness defines

a richer structure of partial ordering.

Figure 1: Ranking Candidates by Relative Correctness

B. Non Deterministic Programs

In [1], Desharnais et al generalize the definition of relative
correctness to non-deterministic programs. Doing so is
important not only because we want to compare non-
deterministic programs, but also because we want to compare
deterministic programs without having to compute their
deterministic function in all its detail. In this section, we
merely introduce this definition, and discuss its significance,
reverting for the remainder of this paper to the definition for
deterministic programs.

Given a specification 𝑅 and two (not necessarily

deterministic) programs 𝑝 and 𝑝’ , we say that 𝑝’ is more-

correct than 𝑝 with respect to specification 𝑅 if and only if:
(𝑅 ∩ 𝑃)𝐿(𝑅 ∩ 𝑃′)𝐿 (𝑅 ∩ 𝑃)𝐿 ∩ 𝑅̅ ∩ 𝑃′𝑃.

𝑝7, 𝑝8, 𝑝9

𝑝0

𝑝2

𝑝5

𝑝3

𝑝6
𝑝4

𝑝1

correct programs

incorrect programs

Informally, 𝑝’ is more-correct than 𝑝 if and only if it has a
larger competence domain, and does not violate 𝑅 except
whenever 𝑝 does (i.e. violates 𝑅 less often than 𝑝). Note that
while the competence domain of a deterministic program 𝑝
with respect to a specification 𝑅 is the set of initial states for
which 𝑝 does behave according to 𝑅, the competence domain
of a non-deterministic program is the set of initial states where
program 𝑝 may behave according to 𝑅.

C. Faults and Fault Removal

Before we define faults, we must recognize that any
definition of a fault implicitly assumes a scale of granularity;
when we resolve to locate a fault in a program, we usually
mean to identify a line of code, or a statement, or a condition,
or a lexical token that may be faulty. We use the term feature
to refer to a piece of source code at the appropriate level of
granularity, and we introduce the following definition: Given a
specification 𝑅 and a program 𝑝, and given a feature 𝑓 in 𝑝, we
say that 𝑓 is a fault in program 𝑝 with respect to 𝑅 if and only
if it admits a substitution that would make the program more-
correct. We assume that skip (the empty statement) is part of
our vocabulary of statements, so that this definition includes
missing statements and extraneous statements as possible
faults.

Also, we define monotonic fault removal as follows: Given
a specification 𝑅, a program 𝑝, and a fault 𝑓 in 𝑝, we say that
the pair of features (𝑓, 𝑓’) represents a fault removal of 𝑓 in 𝑝
with respect to 𝑅 if and only if the program 𝑝’ obtained from 𝑝
by replacing 𝑓 with 𝑓’ is more-correct than 𝑝 with respect to 𝑅.

We argue that this definition of (monotonic) fault removal
provides us with a logical framework for corrective
maintenance through correctness-enhancing transformations, in
the same way as (and for the same purpose as) refinement
provides us with a logical framework for program derivation
through correctness-preserving transformations. Also, while
we use the term monotonic (in monotonic fault removal) for
emphasis, we consider that a substitution (𝑓, 𝑓’) cannot be
considered a fault removal unless it is indeed monotonic (i.e. it
makes 𝑝’ more-correct than 𝑝).

D. Provable Fault Removal

If we find a fault 𝑓 in a program 𝑝, replace 𝑓 by a feature 𝑓’
to obtain a new program 𝑝’, then test program 𝑝’ on some test
data 𝑇, then depending on the configuration of the competence
domain of 𝑝 (say, 𝐶𝐷), the competence domain of 𝑝’ (say, 𝐶𝐷’)
and test data 𝑇, we expose ourselves to two risks:

 Program 𝑝’ may fail on test data 𝑇 even though it is more-
correct than 𝑝; this may happen if 𝐶𝐷’ is a superset of 𝐶𝐷,
but it is not a superset of 𝑇. See Figure 2(a).

 Program 𝑝’ may run successfully on test data 𝑇 even
though it is not more-correct than program 𝑝; this may
happen if 𝐶𝐷’ is a superset of 𝑇 without being a superset
of 𝐶𝐷. See Figure 2(b).

In both of these situations, the test misleads us to the wrong
conclusion about the fault removal. As an alternative, we
consider proving that 𝑝’ is more-correct than 𝑝 , rather than
trying to infer relative correctness through testing. One of the
main obstacles to this alternative approach is that it requires
that we compute the function of the two programs, a rather
steep requirement, usually. Hence we consider ways to
establish relative correctness without having to compute
program functions. This is the focus of the next section.

(a) (b)

Figure 2: Misleading Tests

IV. FAULT REMOVAL IN ITERATIVE PROGRAMS

A. Invariant Relations

Let 𝑤 be a while loop on space 𝑆 of the form
w: while (t) {b;}

and let 𝐵 be the function of the loop body and 𝑇 be the

following relation, which represents the loop condition, i.e.

𝑇 = {(𝑠, 𝑠′)|𝑡(𝑠)}. We assume that this while loop terminates

for all states in 𝑆, and we define an invariant relation of 𝑤 to

be a reflexive transitive superset of (𝑇 ∩ 𝐵). According to

this definition, an invariant relation of w is a superset (an

approximation) of the reflexive transitive closure of (𝑇 ∩ 𝐵).

Because invariant relations have a similar name to the widely

known invariant assertions [2], we highlight here the main

differences and relations between them.

 Whereas an invariant assertion is a unary predicate

(characterizing a single state), an invariant relation is a

binary relation (characterizing two states).

 Whereas an invariant assertion characterizes states of the

iteration after an arbitrary number of iterations, an

invariant relation characterizes two states separated by an

arbitrary number of iterations (hence, in particular, the

initial state and final state).

 Whereas an invariant assertion depends on the loop as

well as on the precondition of the loop, an invariant

relation depends exclusively on the loop.

CD’

CD’ CD

T

CD

T

 Whereas all invariant assertions stem from invariant

relations, only a small class of invariant relations can be

derived from invariant assertions.

As an illustration, we consider the following simple loop on
natural variables 𝑛, 𝑓, and 𝑘:

{k=1; f=1; while (k<=n) {f=f*k; k++;}}

Then

 An invariant assertion of this loop, for the given
initialization, is: 𝐴 ≡ (𝑓 = (𝑘 − 1)!).

 An invariant relation for the while loop, regardless of its

initialization, is: 𝑉 = {(𝑠, 𝑠′)|
𝑓

(𝑘−1)!
=

𝑓′

(𝑘′−1)!
}.

 Note that we can derive the invariant assertion 𝐴 from the
invariant relation 𝑉 by taking its post-restriction to the
precondition (𝑓 = 1𝑘 = 1).

B. Invariant Relations and Absolute Correctness

In [3] we present a method to prove the correctness or
incorrectness of a loop with respect to a specification, using
invariant relations. This method is based on the following two
propositions, which give, respectively, a sufficient condition
and a necessary condition of correctness of a (uninitialized)
while loop with respect to a specification R.

Proposition: Sufficient condition of correctness. Let 𝑤 be a

while loop of the form while (t) {b;} on space 𝑆 and let

𝑅 be a specification on 𝑆. If w admits an invariant relation 𝑉
that satisfies the following condition,

𝑅𝑇̅𝑉𝐿(𝑉𝑅𝑇̂̅) = 𝑉

then 𝑤 is correct with respect to 𝑅.

Interpretation: this condition provides that invariant relation
𝑉 captures sufficient information about 𝑤 to subsume
specification 𝑅; we do not need to compute the function of 𝑤,
V captures enough information to conclude that w is correct.

Proposition: Necessary condition of correctness. Let 𝑤 be a

while loop of the form while (t) {b;} on space 𝑆, let 𝑅

be a specification on 𝑆, and let 𝑉 be an invariant relation of 𝑤.
If 𝑤 is correct with respect to 𝑅 then we have necessarily:

(𝑉𝑅)𝑇̅ = 𝑅𝐿.

Interpretation: while this is a necessary condition of
correctness, it is best to interpret it by considering that its
negation is a sufficient condition of incorrectness. This
proposition provides in effect that any while loop that admits
an invariant relation 𝑉 that does not satisfy this condition could
not possibly be correct with respect to 𝑅. In other words, any
while loop that admits an invariant relation 𝑉 that satisfies the

condition (note the change from = to )

(𝑉𝑅)𝑇̅ ≠ 𝑅𝐿.

is necessarily incorrect with respect to 𝑅 . Any invariant
relation 𝑉 that satisfies this condition is said to be incompatible

with respect to specification 𝑅. Any invariant relation that is
not incompatible is said to be compatible.

In [3] we present an algorithm for proving the correctness or
incorrectness of a loop with respect to a specification, which
proceds as follows:

 Using an invariant relations generator, we generate
invariant relations one by one, and test the sufficient
condition and necessary condition.

 If the aggregate of invariant relations found so far satisfy
the sufficient condition then we conclude that the loop is
correct, and we exit.

 If one of the invariant relations proves to be incompatible
with 𝑅, we conclude that the loop is incorrect, and we exit.

 If we run out of invariant relations before we reach the
conclusion that the loop is correct or that the loop is
incorrect, then we conclude that we do not know enough
about the loop to rule on its correctness (hence we must
upgrade our invariant relations generator), and we exit.

In the next section we discuss how we can use a variation of
this algorithm to establish relative correctness, rather than
absolute correctness.

C. Invariant Relations and Relative Correctness

Given a while loop 𝑤 of the form while (t) {b;} on

space 𝑆 and a specification 𝑅 on 𝑆 , we are interested to
determine whether 𝑤 is correct with respect to 𝑅, and if not
how we can locate and remove a fault in 𝑤. Ideally, we want
to support all the steps in this process, namely:

 Determine that the loop is incorrect (for else there is no
fault to remove).

 Determine the location of the fault.

 Determine what to replace the fault with.

 Prove that the substitution constitutes a monotonic fault
removal.

To this effect, we consider the following proposition, which we
give without proof.

Proposition: Fault Removal Through Enhanced Compati-
bility. Let 𝑅 be a specification on space 𝑆 and let 𝑤 be a while

loop on 𝑆 of the form while (t) {b;} which terminates

for all 𝑠 in 𝑆 . Let 𝑄 be an invariant relation of 𝑤 that is
incompatible with 𝑅, and let 𝐶 be the largest invariant relation

of w such that 𝑊 = (𝐶𝑄)𝑇̅^. Let 𝑤’ be a while loop that
has 𝐶 as an invariant relation, terminates for all 𝑠 in 𝑆 , and
admits an invariant relation 𝑄’ that is compatible with 𝑅 and

satisfies the condition 𝑊′ = (𝐶𝑄′)𝑇̂̅^. Then 𝑤’ is strictly
more-correct than 𝑤 with respect to 𝑅.

Interpretation: This proposition provides that if we change
loop w in such a way as to replace an incompatible invariant
relation (Q) into a compatible invariant relation (Q’) of equal

strength (so that (𝐶𝑄′)𝑇̂̅ ^ is deterministic, just like
(𝐶𝑄)𝑇̅^) while preserving all the other invariant relations
(C), then we obtain a strictly more-correct while loop. What

we mean by strictly more-correct is, of course, that the
competence domain of 𝑤’ is a proper superset of the
competence domain of 𝑤; in other words, 𝑤’ behaves correctly
for all states on which 𝑤 behaves correctly, and it behaves
correctly for at least one state on which 𝑤 fails.

Using this Proposition, we propose the following algorithm for
fault removal in while loops:

1. Determination that the loop is faulty. Given the
specification 𝑅 and the while loop 𝑤, we generate all the
invariant relations we can, and place them in two separate
columns, one for compatible relations and one for
incompatible relations.

o If the incompatible column has at least one
invariant relation, then the loop is incorrect,
hence it has a fault.

o If the incompatible column is empty and the
intersection of all the compatible invariant
relations satisfies the sufficient condition of
correctness, then the loop is correct.

o If neither of the conditions above hold, then we
cannot rule on the correctness of the loop, and the
algorithm fails (the invariant relations generator
needs to be upgraded).

2. Localization of the Fault. We consider the incompatible
column and select from it an invariant relation that
involves the fewest possible variables; for the same
number of variables, we select the invariant relation (say
Q) whose variables are involved in the smallest number of
statements in the loop. We select one of these statements
as the feature that we want to correct.

3. Guidance to modify the selected statement. We need to
modify the selected statement in such a way as to replace
the current incompatible invariant relation (Q) with a
compatible invariant relation (Q’). But we want to do so
without affecting the compatible invariant relations. This
constraint is used to generate a condition that guides us in
the modification process. Let C be the intersection of all
the compatible invariant relations, let 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛 be
the program variables, and let 𝑥1, 𝑥2 be the two variables
that appear in Q. Then, to preserve the compatible
invariant relations of the loop, variables 𝑥1, 𝑥2 , 𝑥′1, 𝑥′2
must satisfy the following constraint:

∃ 𝑥3, … 𝑥𝑛 , , 𝑥′3, … 𝑥′𝑛:

(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, 𝑥′
1, 𝑥′

2, 𝑥′
3, … 𝑥′

𝑛) ∈ 𝐶.

We refer to this condition as the condition of compatibility
preservation.

4. Verification of Fault Removal. Once we have changed the
selected statement in such a way as to preserve the
compatible invariant relations, we recompute the invariant
relations and ensure that the selected incompatible
invariant relation is now replaced by a compatible
invariant relation. This ensures that we now have a more-
correct program than we did before. This sends us back to
step 1, to check whether the loop has now become correct

(if its compatible relations subsume the specification) or
whether it is still incorrect (if the incompatible column is
still not empty).

D. Invariant Relations and Relative Correctness Proofs

As an illustrative example, we consider the state space S
defined by the following variable declarations:

const float upsilon = 0.00001;

const float a= 0.15;

const float b= 0.08;

// we always have: 0<b<a<1.0;

float r, p, n, x, m, l, k, y, w, y, z, v,

u, d; int t;

and we consider program 𝑤 on a state space 𝑆 defined by:

p1: while (abs(r-p)>upsilon)

 {t=t+1; n=n+x; m=m-l; l=(1+b)*l;

 k=k+1000; y=n+k; w=w+z; z=(1+a)+z;

 v=w+k;r=(v-y)/y;u=(m-n)/n;d=r-u;}

The invariant relations generator produces fourteen invariant
relations:

 𝑉1 = {(𝑠, 𝑠′)| 𝑥′ = 𝑥}.

 𝑉2 = {(𝑠, 𝑠′)|𝑡𝑡′}.

 𝑉3 = {(𝑠, 𝑠′)|𝑘𝑘′}.

 𝑉4 = {(𝑠, 𝑠′)||𝑙| |𝑙′|}.

 𝑉5 = {(𝑠, 𝑠′)|𝑧𝑧′}.

 𝑉6 = {(𝑠, 𝑠′)|𝑘 − 1000 × 𝑡 = 𝑘′ − 1000 × 𝑡′}.

 𝑉7 = {(𝑠, 𝑠′)|𝑙 × (1 + 𝑏)−𝑧 = 𝑙′ × (1 + 𝑏′)−𝑧′}.

 𝑉8 = {(𝑠, 𝑠′)|𝑙 × (1 + 𝑏)−
𝑘

1000 = 𝑙′ × (1 + 𝑏′)−
𝑘′

1000}.

 𝑉9 = {(𝑠, 𝑠′)|𝑙 × (1 + 𝑏)
−

𝑧

(1+𝑎) = 𝑙′ × (1 + 𝑏′)
−

𝑧′

(1+𝑎)}.

 𝑉10 = {(𝑠, 𝑠′)|𝑧 − (1 + 𝑎) × 𝑡 = 𝑧′ − (1 + 𝑎) × 𝑡′}.

 𝑉11 = {(𝑠, 𝑠′)|1000 × 𝑧 − (1 + 𝑎) × 𝑘 = 1000 × 𝑧′ −
(1 + 𝑎) × 𝑘′}.

 𝑉12 = {(𝑠, 𝑠′)|𝑚 +
𝑙

𝑏
= 𝑚′ +

𝑙′

𝑏
}.

 𝑉13 = {(𝑠, 𝑠′)|𝑤 + 𝑧 ×
𝑧−1−𝑎

2×(1+𝑎)
= 𝑤′ + 𝑧′ ×

𝑧′−1−𝑎

2×(1+𝑎)
}.

 𝑉14 = {(𝑠, 𝑠′)|1000 × 𝑛 − 𝑘 × 𝑥 = 1000 × 𝑛′ − 𝑘′ × 𝑥′}.

We consider the following specification 𝑅 on space 𝑆:

𝑅 = {(𝑠, 𝑠′)|𝑧 > 0  𝑥 = 𝑥′ 𝑤′

= 𝑤 − 𝑧 ×
1 − (1 + 𝑎)𝑡′−𝑡

𝑎
  𝑚′ 0  𝑙′0}

We review all the invariant relation for compatibility with
respect to 𝑅 ; this is done using Mathematica (© Wolfram
Research), by writing a logical formula that corresponds to the
condition of compatibility discussed above. We find:

Compatible Incompatible

𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉11, 𝑉14 𝑉7, 𝑉8, 𝑉9, 𝑉10, 𝑉12, 𝑉13,

We select invariant relation 𝑉7 for remediation; the variables
that appear in this relation are 𝑙 and 𝑧 . We compute the
condition of compatibility preservation, and we find:

|𝑙|𝑙′  𝑧𝑧′.

We focus on variable 𝑧 , consider the statement where this
variable is modified, and consider alternative statements that
satisfy the constraint. For each alternative, we recompute the
new invariant relation that stems from the new statement and
check for compatibility. We find the following substitute:

 z=(1+a)*z;

Hence the new program becomes:

P2: while (abs(r-p)>upsilon)

 {t=t+1;n=n+x;m=m-l;l=(1+b)*l;

 k=k+1000;y=n+k;w=w+z;z=(1+a)*z;

 v=w+k;r=(v-y)/y;u=(m-n)/n;d=r-u;}

We do not know whether this program is correct, but we know
that it is more-correct than the original program; if we test it
and it fails, it will not be because our fault removal was wrong;
rather it will be because it has other faults. When we run the
invariant relations generator on this program, we find the
following list.

 𝑉1 = {(𝑠, 𝑠′)| 𝑥 = 𝑥′}.

 𝑉2 = {(𝑠, 𝑠′)| 𝑡𝑡′}.

 𝑉3 = {(𝑠, 𝑠′)| 𝑘𝑘′}.

 𝑉4 = {(𝑠, 𝑠′)| |𝑙||𝑙′|}.

 𝑉5 = {(𝑠, 𝑠′)| 𝑧𝑧′}.

 𝑉6 = {(𝑠, 𝑠′)| 𝑘 − 1000 × 𝑡 = 𝑘′ − 1000 × 𝑡′}.

 𝑉7 = {(𝑠, 𝑠′)| 𝑙𝑙′}.

 𝑉8 = {(𝑠, 𝑠′)| 1000 × 𝑙 − (1 + 𝑏) × 𝑘 = 1000 × 𝑙′ −
(1 + 𝑏) × 𝑘′}.

 𝑉9 = {(𝑠, 𝑠′)| (1 + 𝑏) × 𝑧 − (1 + 𝑎) × 𝑙 = (1 + 𝑏) × 𝑧′ −
(1 + 𝑎) × 𝑙′}.

 𝑉10 = {(𝑠, 𝑠′)| 1000 × 𝑧 − (1 + 𝑎) × 𝑘 = 1000 × 𝑧′ −
(1 + 𝑎) × 𝑘′}.

 𝑉11 = {(𝑠, 𝑠′)| 1000 × 𝑛 − 𝑥 × 𝑘 = 1000 × 𝑛′ − 𝑥′ × 𝑘′}.

 𝑉12 = {(𝑠, 𝑠′)| (1 + 𝑏) × 𝑛 − 𝑥 × 𝑙 = (1 + 𝑏) × 𝑛′ − 𝑥′ ×
𝑙′}.

 𝑉13 = {(𝑠, 𝑠′)| 𝑧 × (1 + 𝑎)−𝑡 = 𝑧′ × (1 + 𝑎)−𝑡′}.

 𝑉14 = {(𝑠, 𝑠′)| 𝑧 × (1 + 𝑎)−𝑘/1000 = 𝑧′ × (1 +

𝑎)−𝑘′/1000}.

 𝑉15 = {(𝑠, 𝑠′)| 𝑤 −
𝑧

𝑎
= 𝑤′ −

𝑧′

𝑎
}.

 𝑉16 = {(𝑠, 𝑠′)|𝑚 +
𝑙

𝑏
= 𝑚′ +

𝑙′

𝑎
}.

Checking these invariant relations for compatibility against
specification 𝑅, we find the following clasification:

Compatible Incom-
patible

𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉7, 𝑉8, 𝑉9 𝑉10, 𝑉11, 𝑉12, 𝑉13, 𝑉14, 𝑉15 𝑉16

Note that the same fault removal can turn several incompatible
relations into compatible relations; also, when we change a
statement in a loop, our invariant relations generator may have
to use different code patterns to generate invariant relations.

Relation 𝑉16 refers to variables 𝑙 and 𝑚, hence these are the
variables we may modify. We generate the condition on
variables 𝑙 and 𝑚 under which modification of these variables
does not affect compatible invariant relations, and find the
following:

(𝑙 = 0𝑙′ = 0)  (𝑙𝑙′ (𝑙0  𝑙 + 𝑙′0)).

Looking at the statement that updates variable 𝑙, we find that it
meets (the second clause of) this condition as it is; hence if we
do not change it, we are assured not to affect any compatible
invariant relation. We focus on variable 𝑚, and we suggest to
change statement (m=m-l) into (m=m+l). This yields the

following program:

P3: while (abs(r-p)>upsilon)

 {t=t+1;n=n+x;m=m+l;l=(1+b)*l;

 k=k+1000;y=n+k;w=w+z;z=(1+a)*z;

 v=w+k;r=(v-y)/y;u=(m-n)/n;d=r-u;}

We compute the invariant relations of this program and find:

 𝑉1 = {(𝑠, 𝑠′)| 𝑥 = 𝑥′}.

 𝑉2 = {(𝑠, 𝑠′)| 𝑡𝑡′}.

 𝑉3 = {(𝑠, 𝑠′)| 𝑘𝑘′}.

 𝑉4 = {(𝑠, 𝑠′)| |𝑙||𝑙′|}.

 𝑉5 = {(𝑠, 𝑠′)| 𝑧𝑧′}.

 𝑉6 = {(𝑠, 𝑠′)| 𝑘 − 1000 × 𝑡 = 𝑘′ − 1000 × 𝑡′}.

 𝑉7 = {(𝑠, 𝑠′)| 𝑙𝑙′}.

 𝑉8 = {(𝑠, 𝑠′)| 1000 × 𝑙 − (1 + 𝑏) × 𝑘 = 1000 × 𝑙′ −
(1 + 𝑏) × 𝑘′}.

 𝑉9 = {(𝑠, 𝑠′)| (1 + 𝑏) × 𝑧 − (1 + 𝑎) × 𝑙 = (1 + 𝑏) × 𝑧′ −
(1 + 𝑎) × 𝑙′}.

 𝑉10 = {(𝑠, 𝑠′)| 1000 × 𝑧 − (1 + 𝑎) × 𝑘 = 1000 × 𝑧′ −
(1 + 𝑎) × 𝑘′}.

 𝑉11 = {(𝑠, 𝑠′)| 1000 × 𝑛 − 𝑥 × 𝑘 = 1000 × 𝑛′ − 𝑥′ × 𝑘′}.

 𝑉12 = {(𝑠, 𝑠′)| (1 + 𝑏) × 𝑛 − 𝑥 × 𝑙 = (1 + 𝑏) × 𝑛′ − 𝑥′ ×
𝑙′}.

 𝑉13 = {(𝑠, 𝑠′)| 𝑧 × (1 + 𝑎)−𝑡 = 𝑧′ × (1 + 𝑎)−𝑡′}.

 𝑉14 = {(𝑠, 𝑠′)| 𝑧 × (1 + 𝑎)−𝑘/1000 = 𝑧′ × (1 +

𝑎)−𝑘′/1000}.

 𝑉15 = {(𝑠, 𝑠′)| 𝑤 −
𝑧

𝑎
= 𝑤′ −

𝑧′

𝑎
}.

 𝑉16 = {(𝑠, 𝑠′)|𝑚 −
𝑙

𝑏
= 𝑚′ −

𝑙′

𝑏
}.

When we check these invariant relations against specification
R for compatibility, we find that they are all compatible.

Compatible

In
co

m
-

p
a

tib
le

𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉7, 𝑉8, 𝑉9 𝑉10, 𝑉11, 𝑉12, 𝑉13, 𝑉14, 𝑉15, 𝑉16

This does not mean that program p3 is correct. All it means is
that program p3 is more-correct than programs p2 and p1; the
absence of incompatible relations is not sufficient to ensure
correctness; all it means is that we did not prove the program
incorrect).

We do find that program p3 is correct with respect to R, by
virtue of the proposition of sufficient correctness, because we
find that relation V, the intersection of all the invariant relations
of p3, satisfies the sufficiency condition:

𝑅𝑇̅𝑉𝐿(𝑉𝑅𝑇̂̅) = 𝑉.

This has been proved using Mathematica; details of the proof
are given at http://selab.njit.edu/icst2016proof.

E. Initialized While Loops

As a second illustrative example, we consider the following
program that purports to compute Fibonacci numbers; its space
is defined by the following declarations:

 const int cN = …;

 int i, j, fb, nc, np;

The source code of the loop 𝑤 is:

 while (j!=cN)

 {j=j+i; nc=fb; i=i+1;

 fb=np+nc; np=nc; j=j-i;}

Deployment of the invariant relations generator produces the
following invriant relations (where 𝐹 is the Fibonacci
function):

 𝑉1 = {(𝑠, 𝑠′)| 𝑖 ≤ 𝑖′}.

 𝑉2 = {(𝑠, 𝑠′)|𝑗 ≥ 𝑗′}.

 𝑉3 = {(𝑠, 𝑠′)|𝑖 + 𝑗 = 𝑖′ + 𝑗′}.

 𝑉4 = {(𝑠, 𝑠′)|𝑛𝑝′ = 𝑓𝑏 × 𝐹(𝑖′ − 𝑖) + 𝑛𝑝 × 𝐹(𝑖′ − 𝑖 − 1)}.

 𝑉5 = {(𝑠, 𝑠′)|𝑓𝑏′ = 𝑓𝑏 × 𝐹(𝑖′ − 𝑖 + 1) + 𝑛𝑝 × 𝐹(𝑖′ − 𝑖)}.

We consider the following specification:

𝑅 = {(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁  𝑓𝑏′ = 𝐹(𝑗 + 2 − 𝑐𝑁) 

 𝑛𝑐′ = 𝐹(𝑗 + 1 − 𝑐𝑁)  𝑛𝑝′ = 𝐹(𝑗 + 1 − 𝑐𝑁) 

𝑖′ = 𝑖 + 𝑗  𝑗′ = 𝑐𝑁}.

In the table below, we show how the invariant relations listed
above are classified between compatible relations and
incompatible relations with respect to specification 𝑅.

Compatible Incompatible

𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5

Because we have found invariant relations that are
incompatible with specification R, we infer that this loop is
incorrect with respect to R; hence there is a fault.

A theorem by H.D. Mills [4] provides a condition under which
a function 𝑊 can be computed by an uninitialized while loop:

(𝐿𝑊 ∩ 𝐼)𝑊 = (𝐿𝑊 ∩ 𝐼).

In [5] we generalize this result to give a condition on a relation
𝑅 to admit an uninitialized while loop as a correct program
(i.e. a condition under which specification R can be refined by
a function W that satisfies Mills’ condition, above):

𝑅𝐿  𝑅(𝑅 ∩ 𝐼)𝐿.

Interestingly, we find that our relation 𝑅 given above does not
satisfy this condition. Indeed, we find:

𝑅𝐿 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁}.

On the other hand, we find

𝑅 ∩ 𝐼 = {(𝑠, 𝑠′)| 𝑠′ = 𝑠  𝑗 > 𝑐𝑁  𝑓𝑏′

= 𝐹(𝑗 + 2 − 𝑐𝑁)  𝑛𝑐′

= 𝐹(𝑗 + 1 − 𝑐𝑁)  𝑛𝑝′

= 𝐹(𝑗 + 1 − 𝑐𝑁)  𝑖′ = 𝑖 + 𝑗  𝑗′ = 𝑐𝑁}.

This relation is empty, since it is a subset of

{(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁  𝑗 = 𝑐𝑁},

which is itself empty. Hence 𝑅(𝑅 ∩ 𝐼)𝐿 is empty, and the
condition

𝑅𝐿  𝑅(𝑅 ∩ 𝐼)𝐿

does not hold. So that specification R cannot be satisfied by an
unitialized while loop; in other words, even though 𝑤 is
incorrect with respect to 𝑅 (as shown by the existence of
incompatible relations), there is nothing we can do to 𝑤 to
correct it; instead, any correction must be outside the loop, say
in the initialization. In light of this example, we may want to

refine the algorithm discussed above (in section IV-C) by
adding a step where we check the condition (𝑅𝐿  𝑅(𝑅 ∩
𝐼)𝐿) before attempting to remedy the loop; indeed, if this
condition is not satisfied, then no loop can satsify specification
𝑅, hence the focus of fault removal ought to divert away from
the loop (e.g. towards its initialization).

To get some guidance for how to initialize this loop, we
compute its competence domain with respect to 𝑅 . To this
effect, we calculate the function of 𝑤 from its invariant
relations using a formula provided by [3]; this calculation is
done automatically, using the computer algebra program
Mathematica (© Wolfram Research). We find:

𝑊 = {(𝑠, 𝑠′)| 𝑗  𝑐𝑁  𝑖′ = 𝑖 + 𝑗 − 𝑐𝑁  𝑗′ = 𝑐𝑁  𝑛𝑝′

= 𝑛𝑝 × 𝐹(𝑗 − 𝑐𝑁 − 1) + 𝑓𝑏
× 𝐹(𝑗 − 𝑐𝑁) 𝑛𝑐′ = 𝑛𝑝′  𝑓𝑏′

= 𝑛𝑝 × 𝐹(𝑗 − 𝑐𝑁) + 𝑓𝑏 × 𝐹(𝑗 − 𝑐𝑁 + 1)}.

The competence domain of w can be computed in Mathematica
by simplifying the following logical expression (where each
relation is represented by its characteristic predicate):

∃𝑠′: 𝑅(𝑠, 𝑠′)  𝑊(𝑠, 𝑠′).

We find:

𝐶𝐷 = {(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁  ((𝑓𝑏 = 1𝑛𝑝

= 1)  (𝑓𝑏 × (1 + √5) + 2 × 𝑛𝑝

= 3 + √5))}.

Because variables fb and np are of type integer, this
competence domain can be written simply as:

𝐶𝐷 = {(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁  𝑓𝑏 = 1  𝑛𝑝 = 1}.

In order for 𝑤 to behave according to specification 𝑅, variables
𝑓𝑏 and 𝑛𝑝 have to be 1; this suggests that the required
initialization is

fb=1; np=1;

We find (as shown below) that these initializations ensure that
the program is now correct with respect to 𝑅. Interestingly, we
also find that doing only one of these two initializations
produces more-correct (albeit not absolutely correct) programs,
as we show below.

Let 𝑝1 be the program obtained from 𝑤 by adding the
initialization fb=1;. We find

𝑃1 = {(𝑠, 𝑠′)| 𝑗𝑐𝑁  𝑖′ = 𝑖 + 𝑗 − 𝑐𝑁  𝑗′ = 𝑐𝑁  𝑛𝑝′ =
𝑛𝑝 × 𝐹(𝑗 − 𝑐𝑁 − 1) + 𝐹(𝑗 − 𝑐𝑁)  𝑓𝑏′ = 𝑛𝑝 × 𝐹(𝑗 − 𝑐𝑁) +
𝐹(𝑗 − 𝑐𝑁 + 1)  𝑛𝑐′ = 𝑛𝑝′},

From which we infer the competence domain of 𝑝1 as:

𝐶𝐷1 = {(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁  𝑛𝑝 = 1}.

Likewise, we compute the function then competence domain of
𝑝2, obtained by adding np=1; to the while loop, and we find:

𝑃2 = {(𝑠, 𝑠′)| 𝑗𝑐𝑁  𝑖′ = 𝑖 + 𝑗 − 𝑐𝑁  𝑗′ = 𝑐𝑁  𝑛𝑝′ =
𝐹(𝑗 − 𝑐𝑁 − 1) + 𝑓𝑏 × 𝐹(𝑗 − 𝑐𝑁)  𝑓𝑏′ = 𝐹(𝑗 − 𝑐𝑁) + 𝑓𝑏 ×
𝐹(𝑗 − 𝑐𝑁 + 1)  𝑛𝑐′ = 𝑛𝑝′},

Whence,

𝐶𝐷2 = {(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁  𝑓𝑏 = 1}.

Finally, we compute the function and competence domain of
the program p3 obtained from w by adding the two
initializations, fb=1; np=1;, and we find

𝑃3 = {(𝑠, 𝑠′)| 𝑗𝑐𝑁  𝑖′ = 𝑖 + 𝑗 − 𝑐𝑁  𝑗′ = 𝑐𝑁  𝑛𝑝′ =
𝐹(𝑗 − 𝑐𝑁 + 1)  𝑓𝑏′ = 𝐹(𝑗 − 𝑐𝑁 + 2)  𝑛𝑐′ = 𝑛𝑝′},

Whence

𝐶𝐷3 = {(𝑠, 𝑠′)| 𝑗 > 𝑐𝑁 }.

Hence to summarize:

 𝐶𝐷 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁  𝑓𝑏 = 1  𝑛𝑝 = 1}.

 𝐶𝐷1 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁  𝑛𝑝 = 1}.

 𝐶𝐷2 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁  𝑓𝑏 = 1 }.

 𝐶𝐷3 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁 }.

 𝑅𝐿 = {(𝑠, 𝑠′)|𝑗 > 𝑐𝑁 }.

This is reflected in the following figure:

Figure 3. Ranking Candidates by Relative Correctness

V. CONCLUDING REMARKS

In this section, we summarize our main contributions in this
paper, discuss related work, then give a candid assessment of
this work and its future prospects as we envision them.

A. Summary

In this paper we argue that it is possible to remove faults from

a program and build an argument to the effect that the

program is now better for it. We argue that relying

exclusively on testing to ensure fault removal carries some

inherent risks, especially when each fault is treated as if it

were the last fault of the program. To support our argument,

we introduce the concept of relative correctness, i.e. the

property of a program to be more-correct than another with

𝑤

𝑝2 𝑝1

𝑝3

respect to a specification, and show how one can conceivably

prove relative correctness without getting involved in all the

minute details of the two programs in question.

Specifically, we focus on a framework based on invariant

relations, which allows us to support all the phases of fault

removal, including:

 Evidence of incorrectness (hence the need to locate and

remove a fault).

 Localisation of the fault, by identifying the variables

whose assignments may have to be modified.

 Guidance in how to change the code, by formulating a

constraint that ensures correctness enhancement.

 Proof that the fault has indeed been removed, i.e. that the

program will experience no regression in its behavior.

Even though we do not, yet, have an integrated tool that

supports this work, many of its complex steps (such as

generation of invariant relations, verification of logical

properties) are automated. The generation of invariant

relations is discussed in other publications, including [3] and

an online description of the prototype tool can be found at

https://selab.njit.edu/tools/fxloop.php. Invariant relations are

generated from a denotational semantic representation of the

loop, by matching this representation against pre-stored code

patterns and instantiating the corresponding invariant relation

patterns. As for verifying logical properties that arise in our

analysis, we typically use Mathematica.

B. Related Work

In [6] Logozzo et al. introduce a technique for extracting and

maintaining semantic information across program versions:

specifically, they consider an original program 𝑃 and a

variation (version) 𝑃’ of 𝑃, and they explore the question of

extracting semantic information from 𝑃, using it to instrument

𝑃′ (by means of executable assertions), then pondering what

semantic guarantees they can infer about the instrumented

version of 𝑃’. The focus of their analysis is the condition

under which programs 𝑃’ and 𝑃 can execute without causing

an abort (due to attempting an illegal operation), which they

approximate by sufficient conditions and necessary

conditions. They implement their approach in a system called

VMV (Verification Modulo Versions) whose goal is to exploit

semantic information about 𝑃 in the analysis of 𝑃’, and to

ensure that the transition from 𝑃 to 𝑃’ happens without

regression; in that case, they say that 𝑃’ is correct relative to

𝑃. The definition of relative correctness of Logozzo et al [6] is

different from ours, for several reasons: whereas [6] talk

about relative correctness between an original program and a

subsequent version in the context of adaptive maintenance

(where 𝑃 and 𝑃′ may be subject to distinct requirements), we

talk about relative correctness between an original (faulty)

software product and a revised version of the program

(possibly still faulty yet more-correct) in the context of

corrective maintenance with respect to a fixed requirements

specification; whereas [6] use a set of assertions inserted

throughout the program as a specification, we use a relation

that maps initial states to final states to specify the standards

against which absolute correctness and relative correctness are

defined; whereas Logozzo et al. represent program executions

by execution traces (snapshots of the program state at

assertion sites), we represent program executions by functions

mapping initial states into final states; finally, whereas

Logozzo et al define a successful execution as a trace that

satisfies all the relevant assertions, we define it as an initial

state/ final state pair that falls within the relational

specification.

In [7] Lahiri et al. introduce a technique called Differential

Assertion Checking for verifying the relative correctness of a

program with respect to a previous version of the program.

Lahiri et al. explore applications of this technique as a tradeoff

between soundness (which they concede) and lower costs

(which they hope to achieve). Like the approach of Logozzo

et al. [6] (from the same team), the work of Lahiri uses

executable assertions as specifications, represents executions

by traces, defines successful executions as traces that satisfy

all the executable assertions, and targets abort-freedom as the

main focus of the executable assertions. Also, they define

relative correctness between programs 𝑃 and 𝑃’ as the

property that 𝑃’ has a larger set of successful traces and a

smallest set of unsuccessful traces than 𝑃; and they introduce

relative specifications as specifications that capture

functionality of 𝑃’ that 𝑃 does not have. By contrast, we use

input/ output (or initial state/ final state) relations as

specifications, we represent program executions by functions

from initial states to final states, we characterize correct

executions by initial state/ final state pairs that belong to the

specification, and we make no distinction between abort-

freedom (a.k.a. safety, in [7]) and normal functional

properties. Indeed, for us the function of a program is the

function that the program defines between its initial states and

its final states; the domain of this function is the set of states

for which execution terminates normally and returns a well-

defined final state. Hence execution of the program on a state

𝑠 is abort free if and only if the state is in the domain of the

program function; the domain of the program function is part

of the function rather than being an orthogonal attribute; hence

we view abort-freedom as a special form of functional

attribute, rather than being an orthogonal attribute. Another

important distinction with [7] is that we do not view relative

correctness as a compromise that we accept as a substitute for

absolute correctness; rather we argue that in many cases, we

ought to test programs for relative correctness rather than

absolute correctness, regardless of cost. In other words,

whereas Lahiri et al. argue in favor of relative correctness on

the grounds that it optimizes a quality vs. cost ratio, we argue

in favor on the grounds that it optimizes quality.

In [8], Logozzo and Ball introduce a definition of relative

correctness whereby a program 𝑃’ is correct relative to 𝑃 (an

improvement over 𝑃 if and only if 𝑃′ has more good traces and

https://selab.njit.edu/tools/fxloop.php

fewer bad traces than 𝑃 Programs are modeled with trace

semantics, and execution traces are compared in terms of

executable assertions inserted into 𝑃 and 𝑃′; in order for the

comparison to make sense, programs 𝑃 and 𝑃′ have to have

the same (or similar) structure and/or there must be a mapping

from traces of 𝑃 to traces of 𝑃′. When 𝑃′ is obtained from 𝑃

by a transformation, and when 𝑃′ is provably correct relative

to 𝑃, the transformation in question is called a verified repair.

Logozzo and Ball introduce an algorithm that specializes in

deriving program repairs from a predefined catalog that is

targeted to specific program constructs, such as: contracts,

initializations, guards, floating point comparisons, etc. Like

the work cited above [6], [7], Logozzo and Ball model

programs by execution traces and distinguish between two

types of failures: contract violations, when functional

properties are not satisfied; and run-time errors, when the

execution causes an abort; for the reasons we discuss above,

we do not make this distinction, and model the two aspects

with the same relational framework. Logozzo and Ball deploy

their approach in an automated tool based on the static

analyzer cccheck, and assess their tool for effectiveness and

efficiency.

In [9] Nguyen et al. present an automated repair method based

on symbolic execution, constraint solving, and program

synthesis; they call their method SemFix, on the grounds that

it performs program repair by means of semantic analysis.

This method combines three techniques: fault isolation by

means of statistical analysis of the possible suspect statements;

statement-level specification inference, whereby a local

specification is inferred from the global specification and the

product structure; and program synthesis, whereby a corrected

statement is computed from the local specification inferred in

the previous step. The method is organized in such a way that

program synthesis is modeled as a search problem under

constraints, and possible correct statements are inspected in

the order of increasing complexity. When programs are

repaired by SemFix, they are tested for (absolute) correctness

against some predefined test data suite; as we argue

throughout this paper, it is not sensible to test a program for

absolute correctness after a repair, unless we have reason to

believe that the fault we have just repaired is the last fault of

the program (how do we ever know that?). By advocating to

test for relative correctness, we enable the tester to focus on

one fault at a time, and ensure that other faults do not interfere

with our assessment of whether the fault under consideration

has or has not been repaired adequately.

In [10], Weimer et al. discuss an automated program repair

method that takes as input a faulty program, along with a set

of positive tests (i.e. test data on which the program is known

to perform correctly) and a set of negative tests (i.e. test data

on which the program is known to fail) and returns a set of

possible patches. The proposed method proceeds by keeping

track of the execution paths that are visited by successful

executions and those that are visited by unsuccessful

executions, and using this information to focus the search for

repairs on those statements that appear in the latter paths and

not in the former paths. Mutation operators are applied to

these statements and the results are tested again against the

positive and negative test data to narrow the set of eligible

mutants.

Whereas the definitions of relative correctness, faults and fault

removal are introduced in [11], the potential impact of these

concept on software engineering is discussed in [12].

C. Assessment and Prospects

This work is clearly in its infancy; it includes the definition of a
new concept, the premise that this concept can be used for a
provably monotonic fault removal process, and some initial
results that enable us to apply this concept with some
automated support, and without getting involved into the
minute functional details of the program and the specification.

The question that arises with this type of work is, of course,
whether it scales up to programs of realistic size and
complexity. We argue that relative correctness scales up to the
same degree as absolute correctness. The fact that it cannot be
readily employed to software products of arbitrary size and
complexity does not make it any less worthy of investigation,
just as the same constraints do not make absolute correctness
less worthy of study; it is still useful as a logical reasoning
framework; and it can be applied in practice with the proper
balance of formality, expressiveness, and usability, and with
judicious automated support where possible. Also, we argue
that in software quality assurance as in other endeavors, the
law of diminishing returns advocates the use of diverse
methods and tools to maximize impact; the use of relative
correctness to support fault diagnosis and removal stands to
play an important role as a tool in the engineer’s toolbox.

We envision to continue exploring applications of relative
correctness in fault removal, to enhance and integrate our tool
support, and to consider other results (theorems) that enable us
to streamline the verification of relative correctness.

VI. BIBLIOGRAPHY

[1] J. Desharnais, N. Diallo, W. Ghardallou, M. F. Frias, A.

Jaoua and A. Mili, "Relational Mathematics for Relative

Correctness," in Relational and Algebraic Methods in

Computer Science, Braga, Portugal, 2015.

[2] A. C. Hoare, "An Axiomatic Basis of Computer

Programming," Communications of the ACM, pp. 576-

580, 1969.

[3] A. Louhichi, W. Ghardallou, K. Bsaies, L. J. Labed, O.

Mraihi and A. Mili, "Verifying While Loops with

Invariant Relations," IJCCBS, vol. 5, no. 1/2, pp. 78-102,

2014.

[4] H. D. Mills, "The New Math of Computer

Programming," Communications of the ACM, vol. 18, no.

1, pp. 43-48, January 1975.

[5] A. Mili, J. Desharnais and f. Mili, "Relational Heuristics

for the Design of Deterministic programs," Acta

Informatica, vol. 24, no. 3, pp. 239-276, 1987.

[6] F. Logozzo, S. Lahiri, M. Faehndrich and S. Blackshear,

"Veriifcation Modulo Versions: Towards Usable

Verification," in PLDI, 2014.

[7] S. K. Lahiri, K. L. McMillan, R. Sharma and C.

Hawblitzel, "Differential Assertion Checking," in ESEC/

SIGSOFT FSE, 2013.

[8] F. Logozzo and T. Ball, "Modular and Verified

Automatic Program Repair," in OOPSLA, 2012.

[9] T. H. D. Nguyen, D. Qi, A. Roychudhury and S.

Chandra, "SemFix: Program Repair via Semantic

Analysis," in ICSE, 2013.

[10] W. Weimer, T. Ngyuen, C. Le Gouess and S. Forrest,

"Automatically Finding Patches Using Genertic

Programming," in ICSE, 2009.

[11] A. Mili, M. F. Frias and A. Jaoua, "On Faults and Faulty

Programs," in Relational and Algebraic Methods in

Computer Science, Marienstatt, Germany, 2014.

[12] N. Diallo, W. Ghardallou and A. Mili, "Correctness and

Relative Correctness," in Proceedings, ICSE, Firenze,

Italy, 2015.

[13] C. Brink, W. Kahl and G. Schmidt, Relational Methods

in Computer Science, Berlin, Germany: Springer Verlag,

1997.

