
Invariant Assertions, Invariant Relations, and Invariant Functions

Olfa Mraihi, Asma Louhichi, Lamia Labed Jilani, Jules Desharnais and Ali Mili

Institut Superieur de Gestion, Tunis, Tunisia

Faculte des Sciences de Tunis, El Manar, Tunisia

Laval University, Quebec City, Canada

NJIT, Newark NJ, USA

lamia.labed@isg.rnu.tn, louhichiasma@yahoo.fr, olfa.mraihi@yahoo.fr,

Jules.Desharnais@ift.ulaval.ca, mili@cis.njit.edu

May 1, 2012

Abstract

Invariant assertions play an important role in the analysis and documentation of while loops
of imperative programs. Invariant functions and invariant relations are alternative analysis tools
that are distinct from invariant assertions but are related to them. In this paper we discuss these
three concepts and analyze their relationships. The study of invariant functions and invariant
relations is interesting not only because it provides alternative means to analyze loops, but also
because it gives us insights into the structure of invariant assertions, hence may help us enhance
techniques for generating invariant assertions.

Keywords

Invariant assertions, invariant functions, invariant relations, loop invariants, program analysis, pro-
gram verification, while loops, loop functions.

1 Introduction

In [31], Hoare introduced invariant assertions as a key concept in the analysis of while loops. The
study of invariant assertions, and more broadly the functional analysis of programs, have been the
focus of active research in the seventies and eighties, and the subject of renewed interest in the
last few years [1, 6, 7, 9, 20, 23, 37, 39, 40, 61]. In this paper we wish to investigate the relationships
between this well known, thoroughly researched, concept, and two distinct but related concepts:
invariant functions [52] and invariant relations [50].

We consider a while loop w on space S defined by w = {while t do b}. These three concepts
can be summarily and informally characterized as follows:

• An invariant assertion is a predicate α on S that is preserved by application of the loop body:
if it holds before execution of the loop body, then it holds after.

• An invariant function is a total function on S that takes the same value before and after
execution of the loop body (whenever the loop condition holds).

1

• An invariant relation is a relation that contains all pairs of states (s, s ′) such that s′ is obtained
from s by applying an arbitrary number of iterations of the loop body.

The purpose of this paper is three-fold:

• It is a survey of three related but distinct concepts pertaining to the analysis of while loops
in C-like programming languages.

• It explores in what sense and to what extent these three concepts offer complementary insights
into the functional properties of while loops.

• It offers insights into the structure of invariant assertions, hence may help to streamline the
generation of invariant assertions [7, 9, 20, 23, 24, 27, 30, 34, 37, 38, 41, 43, 44, 46, 61, 64].

This paper presents a mix of survey results with original research results; to distinguish these
categories, original results are presented with their proofs whereas survey results are presented
along with bibliographic references to where their proof can be found.

In section 3, we give definitions of all three concepts, using a uniform model, namely the calculus
of relations, which we introduce in section 2. In section 4 we review a number of criteria, and discuss
in what way the three classes of invariants are similar, and in what way they are distinct, with
respect to each of the selected criteria. In section 5 we discuss the interrelations between these
concepts, by asking, for each invariant, whether it can be derived from any of the other invariants,
and eventually by what formula. In section 6 we discuss briefly, by means of a sample example, how
invariant functions and invariant relations can be used in practice to compute or approximate the
function of a while loop, which we take as the semantic definition of the loop. Finally we summarize
our results and explore venues of further research, and related work, in section 7.

2 Relational Mathematics

The reader is assumed to be familiar with relational mathematics [19, 62]; the main purpose of this
section is to introduce notational conventions for standard relational concepts [62].

2.1 Elements of Relations

2.1.1 Definitions and Notations

We consider a set S defined by the values of some program variables, say x, y and z; we typically
denote elements of S by s, and we note that s has the form s = 〈x, y, z〉. We use the notation x(s),
y(s), z(s) to denote the x-component, y-component and z-component of s. We may sometimes use
x to refer to x(s) and x′ to refer to x(s′), when this raises no ambiguity. We refer to elements s of S
as program states and to S as the state space (or space, for short) of the program that manipulates
variables x, y and z. Given a program g on state space S, we use functions on S to capture the
function that the program defines from its initial states to its final states, and we use relations on
S to capture functional specifications that we may want the program to satisfy. To this effect, we
briefly introduce elements of relational mathematics. A relation on S is a subset of the cartesian
product S × S. Constant relations on some set S include the universal relation, denoted by L, the
identity relation, denoted by I, and the empty relation, denoted by ∅.

2

2.1.2 Operations on Relations

Because relations are sets, we apply the usual set theoretic operations between relations: union (∪),
intersection (∩), complement (R), cartesian product (×). Operations on relations also include the
converse, denoted by R̂, and defined by R̂ = {(s, s′)|(s′, s) ∈ R}. The product of relations R and R′

is the relation denoted by R◦R′ (or RR′) and defined by R◦R′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R∧(s′′, s′) ∈

R′}. We admit without proof that R̂R′ = R̂′R̂ and that
̂̂
R = R. Given a predicate t, we denote by

I(t) the subset of the identity relation defined as I(t) = {(s, s′)|s′ = s∧ t(s)} and by T the relation
defined as T = {(s, s′)|t(s)}; by definition, we have I(t) = I ∩ T and T = I(t) ◦ L; adopting the
naming convention of [2, 58], we refer to subsets of the identity as monotypes. The pre-restriction
(resp. post-restriction) of relation R to predicate t is the relation {(s, s ′)|t(s) ∧ (s, s′) ∈ R} (resp.
{(s, s′)|(s, s′) ∈ R ∧ t(s′)}). We admit without proof that the pre-restriction of a relation R to
predicate t can be written as I(t) ◦ R or T ∩R, and the post-restriction of relation R to predicate
t can be written as R ◦ I(t) or R ∩ T̂ .

The domain of relation R is defined as dom(R) = {s|∃s′ : (s, s′) ∈ R}. The range of relation
R is denoted by rng(R) and defined as dom(R̂). We admit without proof that for a relation R,
RL = {(s, s′)|s ∈ dom(R)} and LR = {(s, s′)|s′ ∈ rng(R)}. The nucleus of relation R is the relation
denoted by µ(R) and defined as RR̂; this is known in other sources [2, 58] under the name kernel
(though we reserve the name kernel to a related but distinct concept [36]: κ(R) = {(s, s ′)|∅ ⊂
s′.R ⊆ s.R}). The nth power of relation R, for natural number n, is denoted by Rn and defined
as follows: If n = 0 then I else R ◦ Rn−1. We define the transitive closure of relation R as the
relation denoted by R+ and defined by R+ = {(s, s′)|∃n > 0 : (s, s′) ∈ Rn}. We define the reflexive
transitive closure of relation R as the relation denoted by R∗ and defined by R∗ = R+ ∪ I.

We apply the following conventions with regards to operator precedence: unary operators (com-
plement, inverse, closures) are applied first; they are followed by relational product, then intersec-
tion, then union.

2.1.3 Relation Taxonomy

We say that R is deterministic (or that it is a function) if and only if R̂R ⊆ I, and we say that
R is total if and only if I ⊆ RR̂, or equivalently, RL = L. A relation R is said to be reflexive
if and only if I ⊆ R, transitive if and only if RR ⊆ R, symmetric if and only if R = R̂ and an
equivalence if and only if it is reflexive, symmetric, and transitive. We admit without proof that
the transitive closure of a relation R is the smallest transitive superset of R; and that the reflexive
transitive closure of relation R is the smallest reflexive transitive superset of R. Given two total
deterministic relations R and R′, we say that R is more-injective than (or as injective as) R′ if and

only if [52, 57]: RR̂ ⊆ R′R̂′. A total deterministic relation R is said to be injective if and only if
it is more-injective than I. A relation R is said to be regular [2, 35, 36] (or difunctional [57, 60]) if
and only if RR̂R = R; functions are known to be regular [36, 58].

A relation R is said to be rectangular if and only if R = RLR. A relation R is said to be a
vector (also known as a left condition [19]) if and only if RL = R. In set theoretic terms, a vector
on set S has the form C ×S, for some subset C of S; vector C ×S can also be written as I(C) ◦L;
we may sometimes use the same symbol to represent a subset C of S and the vector that defines
it; it is plain to see that the product of any relation with a vector is a vector. A non-empty vector
p on S is said to be a point if and only if it satisfies the condition pp̂ ⊆ I; whereas a mere vector
represents a subset of C, a point represents a singleton; the same symbol may be used to represent

3

a point and the single element of S that defines it. A relation R is said to be inductive if and only
if it can be written as R = A ∪ Â for some vector A; we leave it to the reader to check that if A is
written as {(s, s′)|α(s)}, then A ∪ Â can be written as {(s, s′)|α(s) ⇒ α(s′)}.

2.1.4 Relational Laws

In this section, we briefly present some relational laws that will be needed in subsequent discussions.
Because these are typically straightforward consequences of definitions, they will be presented
without proof. We let R and Q be arbitrary relations, C be an arbitrary vector on S, p be a point
on S, V be a total function on S, and F be an arbitrary function on S.

(C ∩Q)R = C ∩QR,(1)

CL = C,(2)

LĈ = Ĉ,(3)

ĈR = L(C ∩R),(4)

RC = (R ∩ Ĉ)L,(5)

ĈC = ∅,(6)

(Q ∩ Ĉ)R = Q(C ∩R),(7)

C ∩R = (I ∩ C)R = (I ∩ Ĉ)R,(8)

Ĉ ∩R = R(I ∩ Ĉ) = R(I ∩ C),(9)

I ∩RL = I ∩RR̂ = I ∩ LR̂,(10)

Q ⊆ RL⇔ QL ⊆ RL(11)

Q ⊆ LR⇔ LQ ⊆ LR(12)

R ⊆ I ⇒ R̂ = R(13)

R 6= ∅ ⇒ LRL = L(14)

Rp = Rp(15)

p̂R = p̂R(16)

RV ⊆ Q⇔ R ⊆ QV̂(17)

V̂ R ⊆ Q⇔ R ⊆ V Q(18)

RF ⊆ Q⇔ LF̂ ∩R ⊆ QF̂(19)

F̂R ⊆ Q⇔ FL ∩R ⊆ FQ(20)

Q ∪R(R∗Q) = R∗Q(21)

R ⊆ F ∧ FL ⊆ RL⇔ R = F.(22)

We concur with [19, 58] that algebraic manipulations and proofs are superior to pointwise logic
reasoning, and will endeavor to cast our results and proofs in the former model, rather than the
latter, to the largest extent possible.

2.1.5 Relational Invariants

In this section, we introduce two relational concepts, along with a proposition linking them; these
concepts are useful for the purpose of our subsequent discussions.

4

Definition 1 We consider a relation R on space S and a subset of S represented by a vector C.
We say that R preserves vector C if and only if:

R ∩ C ⊆ Ĉ.

This definition is inspired from the concept of predicative type assertion, introduced by Oliveira in
[56]. This condition means that if the arguments of R are in (set) C, then so are its images.

Definition 2 We consider a relation R on space S and a total relation V on S. We say that R
preserves function V if and only if:

RV ⊆ V.

This definition is inspired from the concept of invariant function introduced by Mili et. al. in [52].
This condition means that V takes the same value before and after application of relation R. The
following Proposition shows how these two concepts are related.

Proposition 1 Given a relation R on S and a subset of S represented by vector C. If relation R
preserves function V , then it preserves vector A = V C.

Proof. We write the conclusion then show that it is the logical consequence of a tautology.

V C ∩R ⊆ V̂ C

⇔ { converse of a product }

V C ∩R ⊆ ĈV̂

⇔ { identity 17 }

(V C ∩R)V ⊆ Ĉ

⇔ { identity 1, V C is a vector }

V C ∩RV ⊆ Ĉ

⇐ { R preserves function V }

V C ∩ V ⊆ Ĉ

⇔ { rewriting the left-hand side as a product }

(I ∩ V C)V ⊆ Ĉ

⇔ { identity 17 }

(I ∩ V C) ⊆ ĈV̂

⇔ { taking the converse on both sides }

(I ∩ V C) ⊆ V C

⇔ { set theory }

true.

qed

To illustrate the meaning of this proposition, we take a simple example of set S defined by three

integer variables x, y, and z, and we let R, V and C be defined as follows:

5

R = {(s, s′)|x′ = x+ 1 ∧ y′ = y − 1},

V = {(s, s′)|x′ = x+ y ∧ y′ = 0 ∧ z′ = 0},

C = {(s, s′)|x+ y = 10}.

It is plain that V is total and deterministic and that C is a vector. To check that R preserves

function V , we compute RV :

RV

= { substitutions }

{(s, s′)|∃s” : x” = x+ 1 ∧ y” = y − 1 ∧ x′ = x” + y” ∧ y′ = 0 ∧ z′ = 0}

= { substitution, simplification }

{(s, s′)|x′ = x+ y ∧ y′ = 0 ∧ z′ = 0}

= { substitution }

V .

According to this proposition, relation R preserves A = V C. We write A as:

V C

= { substitution }

{(s, s′)|∃s” : x” = x+ y ∧ y” = 0 ∧ z” = 0 ∧ x” = 10}

= { substitution, simplification }

{(s, s′)|x+ y = 10}.

We briefly check that R preserves A (though this is assured by Proposition 1):

A ∩R

= { substitutions }

{(s, s′)|x+ y = 10 ∧ x′ = x+ 1 ∧ y′ = y − 1}

= { equivalence }

{(s, s′)|x+ y = 10 ∧ x′ = x+ 1 ∧ y′ = y − 1 ∧ x′ + y′ = 10}

⊆ { logic }

{(s, s′)|x′ + y′ = 10}

= { substitution }

Â.

2.2 Refinement Ordering

We define an ordering relation on relational specifications under the name refinement ordering:

Definition 3 A relation R is said to refine a relation R′ if and only if

RL ∩R′L ∩ (R ∪R′) = R′.

6

In set theoretic terms, this equation means that the domain of R is a superset of (or equal to)
the domain of R′, and that for each element s in the domain of R′, the set of images of s by R
is a subset of (or equal to) the set of images of s by R′. This is similar to, but different from,
refining a pre/postcondition specification by weakening its precondition and/or strengthening its
postcondition [18, 25, 47, 54]. We denote this relation by R w R ′ or R′ v R. Intuitively, R refines
R′ if and only if R represents a stronger requirement than R′.

2.3 Lattice Properties

We admit without proof that the refinement relation is a partial ordering. In [4] Boudriga et al.
analyze the lattice properties of this ordering and find the following results:

• Any two relations R and R′ have a greatest lower bound, which we refer to as the meet,
denote by u, and define by:

R uR′ = RL ∩R′L ∩ (R ∪R′).

The same result is found, constructively, by Oliveira and Rodrigues [58], using point-free
relational algebra.

• Two relations R and R′ have a least upper bound if and only if they satisfy the following
condition (which we refer to as the consistency condition):

RL ∩R′L = (R ∩R′)L.

Under this condition, their least upper bound is referred to as the join, denoted by t, and
defined by:

R tR′ = RL ∩R′ ∪R′L ∩R ∪ (R ∩R′).

Intuitively, the join of R and R′, when it exists, behaves like R outside the domain of R′,
behaves like R′ outside the domain of R, and behaves like the intersection of R and R ′

on the intersection of their domain. The consistency condition ensures that the domain of
their intersection is identical to the intersection of their domains; this condition is computed
constructively by Oliveira and Rodrigues [58] using point-free relational algebra.

• Two relations R and R′ have a least upper bound if and only if they have an upper bound;
this property holds in general for lattices, but because the refinement ordering is not a lattice
(since the existence of the join is conditional), it bears checking for this ordering specifically.

• The lattice of refinement admits a universal lower bound, which is the empty relation.

• The lattice of refinement admits no universal upper bound.

• Maximal elements of this lattice are total deterministic relations.

This lattice structure was further analyzed by Oliveira and Rodrigues [58], using a constructive
approach based on point-free relational algebra (by contrast with the analysis of Boudriga et. al.
[4], which was mostly pointwise).

7

3 Formal Definitions

In this section, we present formal definitions of invariant assertions, invariant relations and invariant

functions; prior to these definitions, we introduce, in section 3.1, some notations and background

results about loops. For the sake of uniformity, we use the same mathematical baggage to represent

all three types of invariants, namely the calculus of relations. Also, for the sake of illustration, we

use a running example in the form of a simple loop on three natural variables n, f , k, such that

1 ≤ k ≤ n+ 1:

w : while (k 6= n+ 1) {f = f ∗ k; k = k + 1; }.

3.1 Loop Semantics

We consider a deterministic program g on some variables x1, x2, ..., xn in some C-like programming
language. We let S be the space defined by all the values that the aggregate of variables may take.
Because g is deterministic, its semantics is captured by a function, which we denote by [g] and
define by

[g] = {(s, s′)| if g starts execution in state s then it terminates in state s′}.

From this definition, it stems that dom([g]) can be interpreted as

dom([g]) = {s| if g starts execution in state s then it terminates}.

As a general convention, we represent programs by lower case letters (e.g. g), and represent their
function by the same letter, in upper case (e.g. G).

We focus specifically on iterative programs written in some C-like programming language, of
the form w = {while t do b}, and we present some results about such programs, which we use
subsequently. Without (much) loss of generality, we assume that the programming languages under
consideration are deterministic, or at least we limit our attention to deterministic constructs of these
languages. Furthermore, we restrict our discussion to while loops that terminate for all states in
their space. We briefly discuss our argument, presented in [51], to the effect that this hypothesis
causes no loss of generality. Given a while loop w on space S, we let s, be an arbitrary element
of dom(W). By definition, execution of w on state s terminates; let si, for i ≥ 1 be the state
obtained after i iterations of the loop starting at s, and let sF be the final state in the execution of
w on s. Execution of w on sF terminates (immediately, in fact, since t(sF) is false), and execution
of the loop on any of the intermediate states si also terminates, since if it did not, neither would
execution of w on s. Hence all the intermediate states and the final state of the execution of w on
s are in dom(W). Therefore by restricting S to dom(W) we are not excluding any state of interest
(all initial states, intermediate states and final states of the loop are in dom(W)).

Given a while loop w on space S, we redefine the space as S := dom(W), thereby making
W vacuously total on (the newly defined) space S. Given the space S of the while loop, we can
compute the domain of W (as a subset of S) using any of the methods and tools available today,
such as those presented in [5, 10–12, 28, 29, 45, 63].

Theorem 1 Mills Theorem (H.D. Mills [53]). We consider a while loop w = {while t do b}
on space S that terminates for all states in S, and a function W on the same space S, then [w] = W
if and only if:

8

• WL = L.

• T ∩W = T ∩ I.

• T ∩W = T ∩BW .

We rewrite the second and third conditions of this theorem using monotypes, as follows:

• I(¬t) ◦W = I(¬t).

• I(t) ◦ B ◦W = I(t) ◦W .

The following theorem gives an explicit expression of the loop function and represents, for our
purposes, the semantic definition of while loops. This theorem is a verbatim representation, in
relational terms, of the loop’s operational semantics [3, 48, 49].

Theorem 2 Given a while statement of the form w = {while t do b} that terminates for all the
states in S. Then its function W is given by:

W = (T ∩B)∗ ∩ T̂ .

Proof. We denote (T ∩ B)∗ ∩ T̂ by W ′ and resolve to prove that W ′ so defined equals W , the
function of the loop. Given that W is assumed to be a function (since we consider loops written in
a deterministic programming language), it suffices (according to law 22) to prove two conditions:

• W ′ ⊆W ,

• WL ⊆W ′L.

Since the while loop is supposed to terminate for all states in S, we write:

∀s ∈ S : ∃s′ ∈ S : ∃n ≥ 0 : (s, s′) ∈ (T ∩B)n ∧ ¬t(s′)

⇔ { definition of transitive closure }

∀s ∈ S : ∃s′ ∈ S : (s, s′) ∈ (T ∩B)∗ ∧ ¬t(s′)

⇔ { recasting in relational terms }

∀(s, s′) ∈ L : (s, s′) ∈ (T ∩B)∗ ◦ T

⇔ { set theory }

L ⊆ (T ∩B)∗ ◦ T

⇔ { W is total, vector identity 5 }

WL ⊆W ′L.

This proves the second condition, as for the first condition, we begin by rewriting W ′ as follows,
using monotypes rather than vectors:

W ′ = (I(t) ◦ B)∗ ◦ I(¬t)

and we proceed as follows:

9

W = IW

⇔ { decomposing the identity, distributivity }

W = I(¬t) ◦W ∪ I(t) ◦W

⇔ { Mills’ Theorem, associativity }

W = I(¬t) ∪ (I(t) ◦B) ◦W

⇒ { Kleene algebra: least fixpoint }

(I(t) ◦B)∗ ◦ I(¬t) ⊆W

⇔ { substitution }

W ′ ⊆W .

qed

3.2 Invariant Assertions

Traditionally [22, 31, 47], an invariant assertion α for the while loop

w = { while t do b}

with respect to a precondition/ postcondition pair (φ, ψ) is defined as a predicate on S that satisfies
the following conditions:

• φ⇒ α.

• {α ∧ t}b{α}.

• α ∧ ¬t⇒ ψ.

As defined, the invariant assertion is dependent not only on the while loop, but also on the loop’s
specification, in the form of a precondition/ postcondition pair. This precludes meaningful com-
parisons with invariant relations and invariant functions, which are dependent solely on the loop.
Hence we redefine the concept of invariant assertion in terms of the second condition alone. Also,
to represent an invariant assertion, we map the predicate on S into a vector (a relation) on S.
Specifically, we represent the predicate α by the vector A defined by

A = {(s, s′)|α(s)}.

Definition 4 Given a while statement on space S of the form

w = {while t do b}

that terminates for all initial states in S, and a vector A on S, we say that A is an invariant
assertion for w if and only if (T ∩B) preserves vector A.

In other words, A is an invariant assertion for w if and only if:

A ∩ T ∩B ⊆ Â.

10

This is a straightforward interpretation, in relational terms, of the second condition of Hoare’s rule,

{α ∧ t}B{α}.

For the running example, we claim that the following vector satisfies the condition of Definition 4:

A = {(s, s′)|f = (k − 1)!}.

To verify that A is an invariant assertion, we compute the left hand side of the definition:

A ∩ T ∩B

= { substitutions }

{(s, s′)|f = (k − 1)! ∧ k 6= n+ 1 ∧ n′ = n ∧ f ′ = f × k ∧ k′ = k + 1}

⊆ { deleting conjuncts }

{(s, s′)|f = (k − 1)! ∧ f ′ = f × k ∧ k′ = k + 1}

= { substitution }

{(s, s′)|f = (k − 1)! ∧ f ′ = (k′ − 1)! ∧ k′ = k + 1}

⊆ { deleting conjuncts }

{(s, s′)|f ′ = (k′ − 1)!}

= { substitution }

Â.

Note that we have not proved that the assertion f = (k − 1)! holds after each iteration; rather we
have only proved that if this assertion holds at one iteration, then it holds at the next iteration,
hence (by induction) after each iteration thereafter. This is in effect an inductive proof without a
basis of induction.

3.3 Invariant Functions

Invariant functions are functions whose value remains unchanged by application of the loop body’s
function [52].

Definition 5 Let w be a while statement of the form {while t do b} that terminates normally
for all initial states in S, and let V be a total function on S. We say that V is an invariant function
for w if and only if (T ∩B) preserves function V .

In other words, an invariant function is a total function V on S that satisfies the condition (T ∩
B)V ⊆ V . The following Proposition provides an alternative characterization.

Proposition 2 Let w be a while statement of the form {while t do b} that terminates normally
for all initial states in S, and let V be a total function on S. Function V on S is an invariant
function of w if and only if:

T ∩BV = T ∩ V.

Proof. Sufficiency. From T ∩BV = T ∩ V we infer (by identity 1) (T ∩B)V = T ∩ V from which
we infer (by set theory) (T ∩B)V ⊆ V .

11

Necessity. Since T ∩V is a function, we can prove T ∩BV = T ∩V by proving T ∩BV ⊆ T ∩V
and (T ∩ V)L ⊆ (T ∩BV)L. We proceed as follows: From (T ∩B)V ⊆ V we infer (by identity 1)
T ∩BV ⊆ V . Combining this with the set theoretic identity T ∩BV ⊆ T , we find (by set theory)
T ∩BV ⊆ T ∩ V .

As for proving that (T ∩ V)L is a subset of (T ∩BV)L, we note that because w terminates for

all states in S, T is necessarily a subset of (or equal to) BL (if not any state in T \ BL will cause

the loop not to terminate), and we proceed as follows:

(T ∩ V)L ⊆ (T ∩BV)L

⇔ { identity 1, applied twice }

T ∩ V L ⊆ T ∩BV L

⇔ { totality of V , applied twice }

T ∩ L ⊆ T ∩BL

⇔ { left: algebra; right: hypothesis T ⊆ BL }

T ⊆ T

⇔ { set theory }

true.

qed

This condition can also be written using monotypes rather than vectors:

I(t) ◦ V = I(t) ◦B ◦ V.

To illustrate the concept of invariant function, we consider the loop of the running example, and
propose the following function:

V




n
f
k


 =




f
(k−1)!

0
0


 .

This function is total, since its value can be computed for any state in S. To check the preservation

condition, we compute:

T ∩ (BV)

⊆ { substitution, simplification }

{(s, s′)|n′ = n ∧ f ′ = f × k ∧ k′ = k + 1} ◦ {(s, s′)|n′ = f
(k−1)! ∧ f

′ = 0 ∧ k′ = 0}

= { relational product }

{(s, s′)|n′ = f×k
(k+1−1)! ∧ f

′ = 0 ∧ k′ = 0}

= { simplification }

{(s, s′)|n′ = f
(k−1)! ∧ f

′ = 0 ∧ k′ = 0}

= { substitution }

V .

12

3.4 Invariant Relations

Intuitively, an invariant relation is a relation that contains all the pairs of states (s, s ′) such that
s′ can be derived from s by application of an arbitrary number (including zero) of iterations of the
loop body. We define it formally as follows.

Definition 6 Given a while loop of the form w = {while t do b} on some space S, and given
a relation R on S, we say that R is an invariant relation for w if and only if it is a reflexive and
transitive superset of (T ∩B).

As a rationale for the concept of invariant relation, consider that a reflexive transitive closure of a
relation is the smallest reflexive transitive superset of the relation. Had we been able to derive the
reflexive transitive closure of (T ∩ B), we would apply Theorem 2 to compute the function of the
loop. But computing the reflexive transitive closure of (T ∩B), i.e. the smallest reflexive transitive
superset of (T ∩ B), is usually very difficult; as a substitute, invariant relations provide arbitrary
(not necessarily smallest) reflexive transitive supersets of (T ∩ B). By taking the intersection of
a sufficient number of invariant relations, we may attain or approximate the reflexive transitive
closure of (T ∩B), from which we can compute or approximate the function of the loop.

To illustrate this concept, we consider again the loop of the running example, and we propose
the following relation:

R =

{
(s, s′)|

f

(k − 1)!
=

f ′

(k′ − 1)

}
.

This relation is reflexive and transitive, since it is the nucleus of a function. To check the invariance

condition, we compute the intersection T ∩B ∩R and check that it equals T ∩B.

T ∩B ∩R

= { Substitution }

{(s, s′)|k 6= n+ 1 ∧ n′ = n ∧ f ′ = f × k ∧ k′ = k + 1 ∧ f
(k−1)! = f ′

(k′−1)!}

= { simplification }

{(s, s′)|k 6= n+ 1 ∧ n′ = n ∧ f ′ = f × k ∧ k′ = k + 1}

= { substitution }

T ∩B.

4 Comparative Analysis

In this section, we go beyond the definitions and attempt to characterize invariant assertions,
invariant relations and invariant functions in such a way as to highlight their similarities and
differences. We consider in turn a number of criteria, and see how each type of invariant fares with
respect to each criterion.

4.1 Invariants as Supersets

According to Definition 6, an invariant relation is a reflexive transitive superset of (T ∩B). In this
section, we show that, interestingly, the search for invariant assertions and the search for invariant
functions can both be seen as searching for a reflexive transitive superset of (T ∩B).

13

4.1.1 Invariant Assertions as Supersets

We put forth the following proposition.

Proposition 3 Let A be an invariant assertion for while statement w = {while t do b} on space
S. Then (A ∪ Â) is a reflexive transitive superset of (T ∩B).

Proof. Reflexivity of (A ∪ Â) can be established as follows:

I ⊆ A ∪ Â

⇔ { set theory }

I ∩A ⊆ Â

⇔ { taking the converse on both sides }

Î ∩A ⊆ A

⇔ { Identity 13 }

I ∩A ⊆ A.

Because the last statement in this chain of equivalences is valid (by set theory), so is the first.

Transitivity of (A ∪ Â) can be established as follows:

(A ∪ Â)(A ∪ Â)

⊆ { distributivity and monotonicity }

AL ∪ Â(A ∪ Â)

= { Identities 2 and 4 }

A ∪ L(A ∩ (A ∪ Â))

= { Distributivity and Boolean algebra }

A ∪ L(A ∩ Â)

⊆ { monotonicity and Identity 3 }

A ∪ Â.

To prove that (A ∪ Â) is a superset of (T ∩B), we merely refer to the definition:

A ∩ T ∩B ⊆ Â

⇔ { set theory }

T ∩B ⊆ (A ∪ Â).

qed

4.1.2 Invariant Functions as Supersets

We put forth the following proposition.

Proposition 4 Let V be an invariant function for while statement w = {while t do b} on space
S. Then (V V̂) is a reflexive transitive superset of (T ∩B).

14

Proof. Because V is total, its nucleus is reflexive; because V is deterministic, its nucleus is
transitive. Because (T ∩ B) preserves function V , we know that (T ∩ B)V ⊆ V , from which we
infer (by identity 17) (T ∩B) ⊆ V V̂ . qed

Note that if V is a total function (which invariant functions are), then the nucleus of V (V V̂)
has the form {(s, s′)|V (s) = V (s′)}.

4.1.3 Taking Stock

We want to reflect on the results of Propositions 3 and 4. These Propositions provide that the
search for invariant assertions and the search for invariant functions are both specialized forms of
the search for invariant relations. But while the search for invariant assertions seeks an inductive
relation (of the form (A ∪ Â) for some vector A) and the search for invariant functions seeks an
equivalence relation (of the form V V̂ , for some function V), the search for invariant relations seeks
an arbitrary reflexive transitive relation that is a superset of (T ∩B). This suggests that invariant
relations are a more general concept than invariant assertions and invariant functions —a claim
which will be further discussed in section 5.

It is possible that reflexivity and transitivity are the only two properties that inductive relations
(stemming from invariant assertions) and equivalence relations (stemming from invariant functions)
have in common. This would make invariant relations some kind of greatest lower bound of invariant
assertions and invariant functions in the IsA lattice.

4.2 Invariants and the Loop Function

Because we represent the semantics of a loop by the function that the loop computes, it is worthwhile
to explore the relationships between the three invariants of interest and the loop function. This is
the subject of this section.

4.2.1 Invariant Assertions and Loop Functions

The following proposition elucidates a simple relation between the function of the loop and a
possible invariant assertion of the loop.

Proposition 5 Let w be the while loop {while t do b} on space S and let C be a subset of S.
Then the vector A on S defined by A = WC is an invariant assertion for w, where W is the
function of w.

Proof. According to Mills’ Threorem, the loop function W satifies the condition T ∩W = T ∩BW .
According to Proposition 2, this is equivalent to T ∩ BW ⊆ W , which we rewrite (according to
identity 1) as (T ∩B)W ⊆W . According to Proposition 1, we infer from this that relation (T ∩B)
preserves vector WC, which by Definition 4 means that WC is an invariant assertion for w. qed

Note that, interestingly, this proposition holds for any subset C of S; we need to remember the
inductive nature of our definition of invariant assertion (Definition 4). We are not saying that A
holds necessarily after each iteration; rather we are only saying that if it holds at some iteration,
it holds subsequently after any number of iterations. In section 4.4, we discuss how to choose C in
such a way that the invariant assertion holds initially (hence after each iteration thereafter).

15

4.2.2 Invariant Relations and Loop Function

In this section, we put forth two propositions that elucidate the relation between invariant relations
and loop functions. The first proposition shows us how to derive an invariant relation from the
function of the loop.

Proposition 6 Given a while loop w on space S of the form {while t do b}; we assume that
w terminates for all s in S, and we let W be the function defined by w. Then R = µ(W) is an
invariant relation for w.

Proof. Relation R = µ(W) is reflexive and transitive because W is total and deterministic.
According to Mills’ Theorem, the loop function W satifies the condition T ∩ W = T ∩ BW .
According to Proposition 2, this is equivalent to T ∩ BW ⊆ W , which we rewrite (according to

identity 1) as (T ∩B)W ⊆W . By identity 17, this is equivalent to (T ∩B) ⊆WŴ . qed

Proposition 6 shows us how to derive an invariant relation from the loop function; a much more
useful result in practice is how to derive the function of the loop (or an approximation thereof)
from an invariant relation. This is the subject of the following proposition.

Proposition 7 We consider a while loop w on space S of the form {w: while t do b}, which

terminates for any element in S. If R is an invariant relation of w then W refines R ∩ T̂ .

Proof. First, we introduce a simple lemma. By hypothesis, R is a superset of (T ∩B). We write:

(T ∩B) ⊆ R

⇒ { taking the closure on both sides }

(T ∩B)∗ ⊆ R∗

⇒ { right hand side is reflexive and transitive }

(T ∩B)∗ ⊆ R

⇒ { monotonicity }

(T ∩B)∗ ∩ T̂ ⊆ R ∩ T̂

⇒ { Theorem 2 }

W ⊆ R ∩ T̂ .

Now, we let Y be R ∩ T̂ . In order to prove that W w Y , we use Definition 3:

WL ∩ Y L ∩ (W ∪ Y)

= { lemma above: W ⊆ Y }

WL ∩ Y L ∩ (Y)

= { identity: Y ⊆ Y L }

WL ∩ Y

= { hypothesis: WL = L }

Y .

16

Hence W w Y . qed

The interest of this proposition is that it enables us to use any invariant relation to build a lower
bound for the function of the loop. Because the function of the loop is total and deterministic, it
is maximal in the lattice of refinement. Hence we can compute or approximate it using only lower
bounds. This will be further illustrated in section 6.

Hence, to summarize, we can derive an invariant relation from the loop function, and we can
approximate (provide a lower bound of) the loop function from an invariant relation.

4.2.3 Invariant Functions and Loop Function

The relation between invariant functions and loop functions is summarized in the following propo-
sition.

Proposition 8 Given a while loop w on S that terminates for all s in S,

• The function of the loop (W) is an invariant function for w.

• The function of the loop (W) is more-injective than any invariant function.

Proof. The first premise stems readily from the definition of invariant functions and from Mills’

Theorem. To prove the second premise, we let V be an invariant function and we resolve to prove

that W (the function of the loop) is more-injective than V , i.e. that WŴ ⊆ V V̂ . We proceed as

follows, starting from the result of Proposition 4.

(T ∩B) ⊆ V V̂

⇒ { taking the reflexive transitive closure on both sides }

(T ∩B)∗ ⊆ (V V̂)∗

⇒ { because (V V̂) is reflexive and transitive }

(T ∩B)∗ ⊆ (V V̂)

⇒ { taking the nucleus on both sides }

(T ∩B)∗ ̂(T ∩B)∗ ⊆ (V V̂)
̂
(V V̂)

⇒ { associativity, simplification }

(T ∩B)∗ ̂(T ∩B)∗ ⊆ (V V̂ V)V̂

⇒ { because V is difunctional }

(T ∩B)∗ ̂(T ∩B)∗ ⊆ V V̂

⇒ { rewriting }

(T ∩B)∗ ◦ I ◦ ̂(T ∩B)∗ ⊆ V V̂

⇒ { because I ⊇ I(¬t), and I(¬t) = I(¬t) ◦ I(¬t), and I(¬t) = Î(¬t) }

(T ∩B)∗ ◦ I(¬t) ◦ Î(¬t) ◦ ̂(T ∩B)∗ ⊆ V V̂

⇒ { rewriting I(¬t) as I ∩ T , and using the identity ÂB = B̂Â }

((T ∩B)∗ ◦ (I ∩ T)) ◦ (̂(T ∩B)∗ ◦ (I ∩ T)) ⊆ V V̂

⇒ { identity 9 }

17

((T ∩B)∗ ∩ T̂) ◦ (
̂

(T ∩B)∗ ∩ T̂) ⊆ V V̂

⇒ { Theorem 2 }

WŴ ⊆ V V̂

qed

In summary, the function of a loop is an invariant function for the loop, and a most injective
invariant function (strongest invariant function [52]).

4.3 Ordering Invariants

Invariants are not created equal. For example true is an invariant assertion for any loop (accord-
ing to the context-free criterion of Definition 4), though a totally useless/ uninformative assertion;
the full relation (L) is an invariant relation for any loop, though a totally useless/ uninformative
invariant relation; finally a constant function is an invariant function for any loop, though a to-
tally useless/ uninformative invariant function. In this section we briefly review how each type of
invariant is ordered.

4.3.1 Ordering Invariant Assertions by Implication

Invariant assertions are naturally ordered by logical implication. As we recall from Definition 4, the
invariant assertions are represented by vectors; hence stronger invariant assertions are represented
by smaller vectors. The inclusion ordering among vectors defines a lattice structure, where the join
is the intersection of vectors and the meet is the union of vectors. For the sake of illustration, we
consider the following invariant assertions, say A0 and A1, defined as:

A0 = {(s, s′)|f = (k − 1)!}

A1 = {(s, s′)|f = (k − 1)! ∧ n = 20}.

To check that A1 is an invariant assertion of the loop, we compute the expression A1 ∩ T ∩B. We

find,

A1 ∩ T ∩B

= { substitutions }

{(s, s′)|f = (k − 1)! ∧ n = 20 ∧ k 6= n+ 1 ∧ n′ = n ∧ f ′ = f × k ∧ k′ = k + 1}

= { substitutions }

{(s, s′)|f = (k − 1)! ∧ n = 20 ∧ k 6= n+ 1 ∧ n′ = 20 ∧ f ′ = (k − 1)! × k ∧ k′ = k + 1}

= { substitutions, simplifications }

{(s, s′)|f = (k − 1)! ∧ n = 20 ∧ k 6= n+ 1 ∧ n′ = 20 ∧ f ′ = (k′ − 1)! ∧ k′ = k + 1}

⊆ { set theory }

{(s, s′)|n′ = 20 ∧ f ′ = (k′ − 1)!}

= { substitution }

Â1.

18

We leave it to the reader to check that A0 is also an invariant assertion. Also, because A1 is a
subset of A0, we concur that A1 represents a stronger invariant assertion of the loop.

4.3.2 Ordering Invariant Functions by Injectivity

Invariant functions are total by definition, hence they all have the same domain. When we write
an equation such as

V (s) = V (B(s)),

this gives all the more information on B that V is more injective, i.e. partitions its domain finely.
If V were a constant, then this equation does not tell us anything about B, since it holds for all B.
Hence we order invariant functions by injectivity.

To illustrate this ordering, we consider the following two invariant functions, and we leave it to
the reader to check that they are indeed invariant functions for the running sample program:

V0




n
f
k


 =




0
f

(k−1)!

0


 .

V1




n
f
k


 =




n
f

(k−1)!

0


 .

To check which (if any) of V0 and V1 is more-injective than the other, we compute their nuclei, and
find

µ(V0) =

{
(s, s′)|

f

(k − 1)!
=

f ′

(k′ − 1)!

}
.

µ(V1) =

{
(s, s′)|

f

(k − 1)!
=

f ′

(k′ − 1)!
∧ n′ = n

}
.

We infer that V1 is more-injective than V0, since µ(V1) ⊆ µ(V0). Indeed, V1 represents more
invariant information than V0.

4.3.3 Ordering Invariant Relations by Refinement

Invariant relations are ordered by refinement, which, as we have discussed in section 2.3, has lattice-

like properties. More refined relations give more information on loop behavior. Because they are

by definition reflexive, invariant relations are total. If we consider the definition of refinement

(Definition 3), we find that it can be simplified as follows

RL ∩R′L ∩ (R ∪R′) = R′

⇔ { R and R′ are total }

L ∩ L ∩ (R ∪R′) = R′

⇔ { Set Theory }

R ∪R′ = R′

⇔ { Set Theory }

19

R ⊆ R′.

Hence for invariant relations, refinement is synonymous with set inclusion. We illustrate this
ordering with a simple example. We leave it to the reader to check that the following two relations
are invariant relations for our running sample program.

R0 = {(s, s′)|
f

(k − 1)!
=

f ′

(k′ − 1)!
}.

R1 = {(s, s′)|
f

(k − 1)!
=

f ′

(k′ − 1)!
∧ n = n′}.

Invariant relation R1 is a subset of, therefore (because they are both total) a refinement of, invariant
relation R0. Clearly, the latter also provides more information on loop properties than the former.

4.4 Strongest Invariants

In this section we briefly review the general form of strongest invariants for a given loop. As far as
invariant functions are concerned, we already know that the loop function is an invariant function,
and that it is a most injective invariant function; hence we will only discuss invariant assertions
and invariant relations.

4.4.1 Strongest Invariant Assertion

We consider a while loop w = {while t do b} on space S and we let W be its function. We seek
to characterize the invariant assertion that is sufficiently strong the prove the strongest possible
claim about the loop, namely (for a given state s0):

{s = s0} while t do b {s = W (s0)}.

We had proven, in section 4.2.1, that WC is an invariant assertion (i.e. satisfies the second verifica-
tion condition of Hoare’s rule) for any vector C on S; in this section, we instantiate C as the singleton
{(s, s′)|s = W (s0)}; whence the vector WC can be written as WC = {(s, s′)|W (s) = W (s0)}. The
remaining verification conditions of Hoare’s rule are then checked, as follows:

• First condition: s = s0 ⇒ W (s) = W (s0).

• Third condition:

W (s) = W (s0) ∧ ¬t(s)

⇒ { Mills’ Theorem }

W (s) = W (s0) ∧W (s) = s

⇒ { Logic }

s = W (s0).

20

As an illustration, we consider the sample loop introduced in section 3, and we let s0 be the state
defined by n(s0) = n0, k(s0) = 1, f(s0) = 1. Also, we write the function of this while loop as:

W




n
f
k


 =




n

f × n!
(k−1)!

n+ 1


 .

Then, W (s) = W (s0) can be written as:

n = n0 ∧ f ×
n!

(k − 1)!
= 1 ×

n0!

0!
∧ n+ 1 = n0 + 1,

which can be simplified to
n = n0 ∧ f = (k − 1)!.

This is indeed an adequate invariant assertion for the given precondition and postcondition.

4.4.2 Strongest Invariant Relation

We have seen in Proposition 7 (section 4.2) that invariant relations can be used to approximate
the function of the loop. For this purpose, an adequate invariant relation is one that enables us
to actually compute (rather than simply approximate) the function of the loop. We propose the
following candidate:

R = (T ∩B)∗

and we prove that it is indeed an invariant relation; then we check that it produces the function
of the loop, by virtue of the formula of Proposition 7. This relation is reflexive and transitive, by
construction. Also, it is, by construction, a superset of (T ∩ B). According to Proposition 7, the
following relation is a lower bound for W :

R ∩ T̂ .

Yet, according to Theorem 2, this is precisely equal to function W , suggesting that the invariant

relation we have chosen is adequate. As an illustration, we consider the sample loop introduced in

section 3, and we write:

T ∩B

= { substitutions }

{(s, s′)|k 6= n+ 1 ∧ n′ = n ∧ f ′ = f × k ∧ k′ = k + 1}.

We claim that the transitive closure of this relation is:

R = {(s, s′)|n′ = n ∧
f

(k − 1)!
=

f ′

(k′ − 1)!
∧ k ≤ k′}.

As we recall, the reflexive transitive closure of a relation is the smallest reflexive transitive superset

of that relation. We content ourselves, in this discussion, with observing that it is a reflexive and

transitive superset of (T ∩B), but not that it is minimal. Reflexivity and transivity can be inferred

21

Criterion
Invariant
Assertion

Invariant
Function

Invariant
Relation

Name,
Attribute

A,
vector

V ,
total deterministic

R,
reflexive transitive

Condition A ∩ T ∩B ⊆ Â T ∩BV ⊆ V (T ∩B) ⊆ R

Example A = {(s, s′)|f = (k − 1)!} V




n
f
k


 =




0
f

(k−1)!

0




R =

{(s, s′)| f
(k−1)! = f ′

(k′−1)!}

Supersets of
(T ∩B) (A ∪ Â) (V V̂) R

Relation to
Loop Function

A = WC
for arbitrary

vector C V = W R = WŴ

Ordering
Implication
Inclusion Injectivity Refinement

Weakest true
Constant
functions L

Optimal
/ Adequate
Invariants

A = {(s, s′)|W (s) = W (s0)}
for some s0 ∈ S V = W R = (T ∩B)∗

Figure 1: Characterizing Invariants

by inspection; as for the condition that R is a superset of (T ∩ B), we can establish it readily by

observing that the intersection R∩(T ∩B) can be shown to equal (T ∩B). By virtue of Proposition

7, we derive the following lower bound for W ,

R ∩ T̂

= { substitutions }

{(s, s′)|n′ = n ∧ f
(k−1)! = f ′

(k′−1)! ∧ k ≤ k′ ∧ k′ = n′ + 1}

= { simplification }

{(s, s′)|k ≤ n+ 1 ∧ n′ = n ∧ f ′ = n! × f
(k−1)! ∧ k

′ = n+ 1}

= { since k ≤ n+ 1 is a state condition, we do not have to write it }

{(s, s′)|n′ = n ∧ f ′ = n! × f
(k−1)! ∧ k

′ = n+ 1}

This is a total and deterministic relation, which is the actual function of the loop.
Summing up: Figure 1 compiles in tabular form the results we have discussed regarding the

distinguishing characteristics of invariant assertions, invariant relations, and invariant functions.

5 Relations between Invariants

In this section, we analyze the inter-relationships between the three invariants.

22

5.1 Invariant Assertions and Invariant Relations

The first question that we raise in this section is: can an invariant relation be used to generate an
invariant assertion? The answer is provided by the following proposition.

Proposition 9 Let R be an invariant relation of w = {while t do b} on space S and let C be
an arbitrary vector on S. Then R̂C is an invariant assertion for w.

Proof. Relation R̂C is a vector since C is a vector. We must prove R̂C ∩ T ∩B ⊆
̂̂
RC. To do so,

we proceed as follows:

R̂C ∩ T ∩B ⊆
̂̂
RC

⇐ { Since T ∩B ⊆ R }

R̂C ∩R ⊆ ĈR

⇐ { since R̂C ∩R ⊆ L(R̂C ∩R) }

L(R̂C ∩R) ⊆ ĈR

⇔ { vector identity 4 }

ĈRR ⊆ ĈR

⇐ { monotonicity }

RR ⊆ R,

which holds by virtue of the transitivity of R. qed

This proposition is interesting to the extent that it shows how to derive an invariant assertion

from an invariant relation, but also because it shows that an invariant relation can generate (poten-

tially) an infinity of invariant assertions, one for each vector C. We consider the following example,

pertaining to the sample loop introduced in section 3, where we take an invariant relation

R = {(s, s′)| f
(k−1)! = f ′

(k′−1)!},

and a set of vectors, say

C0 = {(s, s′)|f(s) = 1 ∧ k(s) = 1}

C1 = {(s, s′)|f(s) = 1 ∧ k(s) = 2}

C2 = {(s, s′)|f(s) = 2 ∧ k(s) = 3}

C3 = {(s, s′)|f(s) = 6 ∧ k(s) = 4}

C4 = {(s, s′)|f = (k − 1)!}

C5 = {(s, s′)|f(s) = 2 ∧ k(s) = 5}.

The invariant assertion that stems from vector C0 is:

A = {(s, s′)|∃s′′ :
f

(k − 1)!
=

f”

(k” − 1)!
∧ f” = 1 ∧ k” = 1},

which can be simplified to
A = {(s, s′)|f = (k − 1)!}.

23

We leave it to the reader to check that the invariant assertions derived from vectors C1, C2, C3 and
C4 are the same as the relation given above, since in all cases we have f”

(k”−1)! = 1. The invariant
assertion that stems from vector C5 is:

A5 = {(s, s′)|∃s′′ :
f

(k − 1)!
=

f”

(k” − 1)!
∧ f” = 2 ∧ k” = 5},

which can be simplified to:

A = {(s, s′)|
f

(k − 1)!
=

1

12
},

or to

A = {(s, s′)|f =
(k − 1)!

12
}.

Through this example, we want to illustrate the idea that in the formula of invariant assertion
provided by Proposition 9, the term R̂ pertains to the while loop alone, whereas C pertains to
the context in which the loop is placed, viz its initalization. So that if the same loop is used with
different initializations, we change C but maintain R.

We now consider the question of generating an invariant relation from an invariant assertion,
for which we have the following proposition.

Proposition 10 Given an invariant assertion A for while loop w = {while to do b} on space
S, the relation R = A ∪ Â is an invariant relation for w.

Proof. Proposition 3 provides that R thus defined is a reflexive and transitive superset of (T ∩B),
hence it satisfies the conditions of Definition 6. qed

Now that we find that we can derive an invariant assertion from any invariant relation and an
invariant relation from any invariant assertion, we need to ask the following questions: can any
invariant assertion be derived from an invariant relation, and can any invariant relation be derived
from an invariant assertion? The answers are provided below.

Proposition 11 Given an invariant assertion A, there exists an invariant relation R and a vector
C such that A = R̂C.

Proof. If A is empty then this proposition holds vacuously for C = ∅. Given a non-empty

invariant assertion A, we let R = A∪ Â and C = A, and we prove that A = R̂C; we already know,

by Proposition 10 that R is an invariant relation. What remains to prove:

R̂C

= { substitutions }
̂

(A ∪ Â)A

= { distributing the converse operation }

(Â ∪A)A

= { distributivity }

ÂA ∪AA

= { identity 6 }

24

AA

= { definition of a vector }

ALAL

= { associativity, and identity 14 (A 6= ∅) }

AL

= { definition of a vector }

A.

qed

As to the matter of whether any invariant relation can be generated from an invariant assertion,

the answer appears to be no, though we have a substitute: any invariant relation can be generated

as an intersection of elementary invariant assertions. To formulate this result, we recall the concept

of point, which is a special type of vector. While a vector is defined by a subset of S, a point is

defined by a singleton. As an illustration, we consider the set S defined by natural variables n, f

and k, and we write a few vectors and a few points, to illustrate the distinction.

C0 = {(s, s′)|f = 1},

C1 = {(s, s′)|f = (k − 1)!},

C2 = {(s, s′)|f = 1 ∧ k = 1},

p0 = {(s, s′)|n = 6 ∧ f = 1 ∧ k = 1},

p1 = {(s, s′)|n = 6 ∧ f = 120 ∧ k = 7},

p2 = {(s, s′)|n = 9 ∧ f = 2 ∧ k = 5}.

We have the following proposition.

Proposition 12 Given an invariant relation R, we can write R as:

R =


⋂

p∈S

(A ∪ Â)


 ,

where A = R̂p.

Proof. We prove a lemma, to the effect that for an arbitrary vector C and a reflexive transitive
relation R the following equation holds:

(23) R̂C ∪ ĈR ∪R = L.

The proof of this lemma proceeds as follows:

R̂C ∪ ĈR ∪R = L

= { Identity (4) }

R̂C ∪ L(C ∩R) ∪R

25

⊇ { reflexivity of R, Boolean algebra, I ⊆ L }

C ∪ (C ∩R) ∪ (C ∩R)

= { set theory }

L.

Because L is maximal, L ⊆ R̂p ∪ p̂R ∪R is equivalent to L = R̂p ∪ p̂R ∪R.
In order to prove the equality given in this proposition, we prove inclusion in both directions.

• Proof of R ⊆
(⋂

p∈S(A ∪ Â)
)
. This formula is a logical consequence of:

∀p ∈ S : R ⊆ R̂p ∪ p̂R,

which we prove as follows:

R ⊆ R̂p ∪ p̂R

⇔ { set theory }

R̂p ∩R ⊆ p̂R

⇔ { identity 12 }

L(R̂p ∩R) ⊆ p̂R

⇔ { identity 4) }

p̂RR ⊆ p̂R

⇐ { monotonicity of product }

RR ⊆ R

⇔ { transitivity of R }

true .

• Proof of
(⋂

p∈S(A ∪ Â)
)
⊆ R. In appendix B, we prove the following equality:


⋂

p∈S

R̂p ∪ p̂R


 =


 ⋃

X⊆S

(⋂

s∈X

R̂p

)
∩


⋂

s∈X

p̂R




 .

By virtue of this equality, it suffices for us to prove that for all subset X of S, we have

(⋂

s∈X

R̂p

)
∩


⋂

s∈X

p̂R


 ⊆ R.

To this effect, we proceed as follows:

(⋂
s∈X R̂p

)
∩
(⋂

s∈X p̂R
)
⊆ R

⇔ { Boolean Algebra }

L ⊆
(⋃

s∈X R̂p
)
∪
(⋃

s∈X p̂R
)
∪R

26

⇔ { Identity: 16 }

L ⊆
(⋃

s∈X R̂p
)
∪
(⋃

s∈X p̂R
)
∪R

⇔ { Distributing ◦ over ∪ }

L ⊆ R̂
(⋃

s∈X p
)
∪
(⋃

s∈X p̂
)
R ∪R

⇔ { Distributing the inverse over ∪ }

L ⊆ R̂
(⋃

s∈X p
)
∪ ̂
(⋃

s∈X p
)
R ∪R

⇔ { if we let C be the vector:
(⋃

s∈X p
)
}

L ⊆ R̂C ∪ ĈR ∪R

⇔ { Lemma above }

true .

qed

As an illustration of this Proposition, we consider the factorial loop presented in section 3, and
let R be the invariant relation defined by:

R =

{
(s, s′)|

f

(k − 1)!
=

f ′

(k′ − 1)!

}
,

and we let p be the point defined by

p = {(s, s′)|s = p}.

Then,

A

= { proposed formula }

R̂p

= { R is symmetric }

Rp

= { substitution }

{(s, s′)| f
(k−1)! = f ′

(k′−1)!} ◦ {(s, s
′)|s = p}

= { relational product }

{(s, s′)| f
(k−1)! = f(p)

(k(p)−1)!}.

From which we infer:

A ∪ Â

= { interpretation, substitution }

{(s, s′)| f
(k−1)! = f(p)

(k(p)−1)! ⇒
f ′

(k′−1)! = f(p)
(k(p)−1)!}.

Taking the intersection of all such relations, for all p in S, we find:

27

⋂
p∈S{(s, s

′)| f
(k−1)! = f(p)

(k(p)−1)! ⇒
f ′

(k′−1)! = f(p)
(k(p)−1)!}

= { interpretation }

{(s, s′)|∀p : f
(k−1)! = f(p)

(k(p)−1)! ⇒
f ′

(k′−1)! = f(p)
(k(p)−1)!}

= { simplification }

{(s, s′)| f
(k−1)! = f ′

(k′−1)!}

= { substitution }

R.

To conclude, from an invariant relation, we can derive as many invariant assertions as there are
vectors on S (infinitely many, if S is infinite); and it takes a large number (possibly infinity) of
invariant assertions (one for each element of S) to produce an invariant relation; furthermore, any
invariant assertion stems from an invariant relation.

5.2 Invariant Relations and Invariant Functions

With regards to the relationship between invariant functions and invariant relations, we have the
following propositions.

Proposition 13 Let V be an invariant function for while statement w = {while t do b}. Then
the nucleus of V is an invariant relation for w.

Proof. This proposition stems readily from Proposition 4 and from the definition of invariant
functions. qed

As to the question of whether any invariant relation is the nucleus of an invariant function,
we answer in the negative, as shown by the following example: if we consider the sample loop of
section 3, and we let R be defined by

R = {(s.s′)|k ≤ k′},

then this relation is clearly reflexive and transitive; in addition, it is a superset of the function of
the loop body. Yet, it is not the nucleus of any function, because a nucleus is symmetric and this
relation is not. This example inspires us the following proposition.

Proposition 14 Let R be a symmetric invariant relation for w = {while t do b}. Then there
exists an invariant function V whose nucleus equals R.

Proof. Since R is an equivalence relation, we let V be the function that to each element of S

associates its equivalence class modulo R (this function can be identified with the power transpose

of relation R [2]). This function is total, since R is reflexive. We analyze its nucleus:

V V̂

= { definition, where s.R is the set of images of s by R }

{(s, s′)|s.R = s′.R}

⊆ { because R is total, both s.R and s′.R are non-empty }

{(s, s′)|(s, s′) ∈ RR̂}

28

= { notation }

RR̂

⊆ { symmetry, transitivity of R }

R.

In addition, given (s, s′) in R, we know by definition that s and s′ have the same equivalence class
by R, hence V (s) = V (s′). Hence (s, s′) ∈ V V̂ . We conclude: R = V V̂ .

What we must prove now is that V is an invariant function. This is straightforward, starting

from the hypothesis that R is an invariant relation:

(T ∩B) ⊆ R

⇔ { substitution R = V V̂ }

(T ∩B) ⊆ V V̂

⇔ { identity 17 }

(T ∩B)V ⊆ V .

qed

As an illustration, we consider the following symmetric invariant relation of the sample loop,

R = {(s, s′)|
f

(k − 1)!
=

f ′

(k′ − 1)!
},

and we put forth the following functions as possible invariant functions whose nucleus is relation
R.

V0




n
f
k


 =




0
f

(k−1)!

0


 , V1




n
f
k


 =




f
(k−1)!

2
4


 , V2




n
f
k


 =




4

2 × f
(k−1)!

5 × f
(k−1)!


 .

Even though not all invariant relations stem from invariant functions, we must make the following
qualifications, borne out by several years’ worth of observations:

• Virtually all useful invariant relations have a symmetric component, i.e. are the intersection of
a symmetric invariant relation with an antisymmetric invariant relation (an invariant relation
cannot be asymmetric since it is reflexive).

• The symmetric component of an invariant relation typically carries a great deal of invariant
information on the loop.

In practice, invariant functions are our most useful source of functional information about a while
loop.

5.3 Invariant Assertions and Invariant Functions

In section 4.2, we have seen that if W is the function of the loop, then WC is an invariant assertion
of the loop, for any vector C on S. This is in fact valid for any invariant function, not only for the
loop function.

29

Criterion
Invariant
Assertion

Invariant
Function

Invariant
Relation

Loop
Function

Invariant
Assertion Is

No relation
was found R = A ∪ Â W w (A ∪ Â) ∩ T̂

Invariant
Function A = V C Is R = V V̂ W w (V V̂) ∩ T̂

Invariant
Relation A = R̂C

if R = R̂
V : S → S/R Is W w R ∩ T̂

Loop
Function A = WC IsA R = WŴ Is

Figure 2: Relations Between Invariants

Proposition 15 If V is an invariant function for w = {while t do b}, which terminates for all
elements of its space S, then A = V C is an invariant assertion for w, for any vector C on S.

Proof. This result stems readily from Definitions 1 and 2, and from Proposition 1. qed

As an illustration, if we take the invariant function V0 presented in the previous section and for
C the point C = {(s, s′)|s = 〈0, 1, 0〉}, we find the following invariant assertion:

A = {(s, s′)|f = (k − 1)!}.

If we choose the same invariant function but the point C ′ = {(s, s′)|s = 〈1, 1, 1〉}, we find the
invariant assertion A = ∅. To conclude this section on the relation between invariant assertions
and invariant functions, we wish to point out what is not a relation between these concepts: An
invariant assertion is not a Boolean valued invariant function, since an invariant assertion may be
false before execution of the loop body and become true after, while an invariant function takes
the same values before and after execution of the loop body. This leads us to suggest that a better
name for invariant assertions is monotonic assertions.

5.4 A Tabular Synopsis

Table 2 shows in succint tabular form the main relations that exist between invariant assertions,
invariant relations and invariant functions. We have added to the comparison the function of the
loop, to highlight the bilateral relations between loop functions and each one of the invariants. In
this table, each entry gives, when possible, an expression that provides the artifact of the column
(or an approximation thereof) as a function of the artifact of the row. We represent invariant
assertions by A, invariant functions by V , invariant relations by R and loop functions by W . Also,
we let C be an arbitrary subset of S, represented by a vector on S. Note the distinction between
labels Is and IsA.

30

6 Computing Loop Functions

In section 4.2.2, we presented a Proposition to the effect that invariant relations can be used to
approximate the function of the loop; in this section, we further elaborate on that result, by showing
how, with a sufficient number of sufficiently refined invariant relations, we can capture the function
of the loop, even for large and non-trivial loops. The detailed algorithm that we use to this effect,
as well as the mathematics that form its foundations, are beyond the scope of our paper, and are
given in [51]. The key ideas that underpin our algorithm are the following:

• Under the hypotheses of our study, we are interested in while loops written in a (deterministic)
C-like programming language that terminate for all initial states; from this, we infer that W
is total and deterministic. Hence, W is maximal in the refinement lattice; consequently, we
can derive W by successive approximations in the form of lower bounds.

• Proposition 7 provides a formula for computing lower bounds for W from invariant relations
of the while loop. Hence we can generate lower bounds for W if we find (a sufficient number
of sufficiently refined) invariant relations of w. By lattice theory, the lower bounds Y1, Y2, ...
Yk can be combined by the lattice operator of join to produce the function of the loop, or an
approximation thereof.

• Because invariant relations are supersets of the loop body’s function, we can prepare the loop
for the extraction of invariant relations by writing its function as an intersection of terms;
once it is written as an intersection, any superset of any term or combination of terms is a
superset of the function of the loop body.

• When the loop body includes if-then-else statements, the outer structure of its function is a
union rather than an intersection; in that case, we find a superset for each term of the union,
then we merge them using a specially programmed function. The role of this function is to take
several reflexive transitive relations (which represent the invariant relations corresponding to
each branch of the loop body) and find a (preferably the smallest) reflexive transitive superset
thereof (while the union of reflexive relations is reflexive, the union of transitive relations is
not necessarily transitive).

• The invariant relations of individual branches are generated by pattern matching, using pat-
terns that are developed off-line by means of invariant functions. These patterns, which
we call recognizers, capture all the programming knowledge and domain knowledge that is
required to compute loop functions in usable form.

• The lower bounds are represented as equations between initial states and final states of the
loop, and are generated in the syntax of Mathematica (c©Wolfram Research). When these
equations are submitted to Mathematica to solve in the final (primed) values of program
variables as a function of initial values, we obtain the function of the loop or (if we have not
generated a sufficient number of invariant relations/ lower bounds, or have not merged them
properly) an approximation of the loop function.

Hence the function of the loop is derived from the source code in a four-phase process:

1. cpp2cca: The first step is to transform the source code (.cpp) onto a form that represents
the function of the loop body as an intersection, or as a union of intersections. The notation

31

we use for this purpose is called conditional concurrent assignments, or CCA for short. This
step is carried out by a complier, which we have developed using simple compiler generation
technology.

2. cca2mat: Using the database of recognizers, we search for patterns in the CCA code, for
which we have a corresponding pattern of an invariant relation; whenever a match is successful,
we generate the corresponding invariant relation, which we represent as a set of Mathematica
equations between initial states and final states. This step is carried out by a C++ program
that converts CCA code into Mathematica equations, involving unprimed program variables
(representing initial states) and primed program variables (representing final states). In its
current version, this program proceeds by performing a syntactic match of the source code
against code patterns of pre-stored recognizers. We are currently working on a more effective
version based on semantic matching; the principle is the same but semantic matching enables
us to do more with fewer, more generic, recognizers.

3. merger. If the loop body has a single branch (no if-then-else or if-then statements) then we
skip this step; if not, we merge the invariant relations corresponding to the different branches
of the loop body into a single invariant relation. This step is carried out by a special-
purpose program that we have written in Mathematica; it proceeds by logical manipulations
to compute a transitive superset of the union of transitive relations.

4. mat2nb. The equations stemming from the lower bounds are submitted to Mathematica for
resolution; they are solved in the output values as a function of the input values, yielding an
explicit expression of the function of the loop.

For the sake of illustration, we show below a sample C++ program, along with the function com-
puted by our system for this program. Due to space limitation, we only present the source code
and the final function representation for this program; interested readers may consult

http://web.njit.edu/ mili/sampleloop.pdf,

where we show the successive files that are generated for this program (loop.cpp, loop.cca, loop.mat,
loop.mrg, loop.nb), as well as the recognizers that are invoked to analyze this loop.

The source program in C++:

#include <iostream>

#include <list>

#include<math.h>

using namespace std;

int Fact (int z); // the factorial function

int f(); // an arbitrary function

int main()

{

const int ca,cb,cd,ce,cN; int i,j,k,h,y,m,q,w,x2,fx;

float ma,st,ut,x1,t,p,n,g,r,s,u,v,z,ta,ka,la,uv;

list <int> l1,l2; float aa[]; float ab[];

while (l2.size()!=0)

{r=pow(i,5) + r; s=s+2*u; k=ca*h+k; la=pow(x1,j)/Fact(j) + la;

32

l1.push_back(l2.front()); h=h+j; m=m+1; j=j+i; fx=f(fx);

g=g-15*cd; q= 1+2*i + q; ma=ka-ma; i=i+1; st=st+aa[i]; j= j-i;

w=4*w; ut=ut+ab[j]; ma=(cd+1)*ka - ma; ka=ka-1; ta=pow(ta,3);

if(x2%4==0)

{x2=x2/4; y= y+2; t= t*4;}

else

{if (x2%2==0) {x2= x2/2; y= y+1; t= t*2;}

else {x2= x2-1; z=z+t;}}

ka=3+3*ka; w= cd+ w/2; p= 2*pow(p,3); m=2*m -2; n=1 + n/2;

s=(cb-2)*u + s; h=h-1+cb-j; g=3*cd + g/5; v=pow(v,4); u=ca+u;

uv=pow(uv,5); l2.pop_front();}

}

The function of this program (where Γ is Euler’s Gamma function):

33

W w





(s, s′)|

aa′ = aa ∧ ab′ = ab ∧ fx′ = fSize[l2](fx) ∧ g′ = 5−Size[l2] × g∧

h′ = h+ cb× Size[l2] ∧ i′ = i+ Size[l2] ∧ j ′ = j − Size[l2] ∧ ka′ = 3Size[l2] × ka∧

k′ =
(2 × k − ca× cb× Size[l2] + 2 × ca× h× Size[l2] + ca× cb× Size[l2]2)

2
∧

l1′ = Concat[l1, l2] ∧ l2′ = ε∧

la′ =
(laΓ[1 + j]Γ[1 + j − Size[l2]] + ex1Γ[1 + j − Size[l2]]Γ[1 + j, x1]

(Γ[1 + j] × Γ[1 + j − Size[l2]])

−
ex1 × Γ[1 + j]Γ[1 + j − Size[l2], x1])

(Γ[1 + j] × Γ[1 + j − Size[l2]])
∧

m′ = 2Size[l2] ×m ∧ma′ =
(−cd× ka+ 3Size[l2] × cd× ka+ 2 ×ma)

2
∧

n′ = 2(−Size[l2])(−2 + 2(1+Size[l2]) + n) ∧ p′ = 2(− 1
2
+ 3(Size[l2])

2
)p(3(Size[l2]))∧

q′ = q + 2 × i× Size[l2] + Size[l2]2∧

r′ =
1

12
× 12 × r − 2 × i× Size[l2] + 20 × i3 × Size[l2] − 30 × i4 × Size[l2]

+ 12 × i5 × Size[l2] − Size[l2]2 + 30 × i2 × Size[l2]2 − 60 × i3 × Size[l2]2

+ 30 × i4 × Size[l2]2 + 20 × i× Size[l2]3 − 60 × i2 × Size[l2]3

+ 5 × Size[l2]4 − 30 × i× Size[l2]4 + 30 × i2 × Size[l2]4 − 6 × Size[l2]5

+ 40 × i3 × Size[l2]3 + 12 × i× Size[l2]5 + 2 × Size[l2]6)∧

s′ =
(2 × s− ca× cb× Size[l2] + 2 × cb× u× Size[l2] + ca× cb× Size[l2]2)

2
∧

st′ = st+

i+Size[l2]∑

index=1+i

aa[index] ∧ t′ = 2
(F loor[Log[x2]

Log[2]
]−F loor[Log[x2′]

Log[2]
])
t∧

ta′ = ta3Size[l2]
∧ u′ = u+ ca× Size[l2] ∧ ut′ = ut+

−1+j∑

index=j−Size[l2]

ab[index]∧

uv′ = uv5Size[l2]
∧ v′ = v2(2Size[l2])

∧ w′ = −cd+ 2Size[l2] × cd+ 2Size[l2] × w∧

x1′ = x1 ∧ y′ = y + F loor[
Log[x2]

Log[2]
] − F loor[

Log[x2′]

Log[2]
]∧

z′ = t× x2 − 2
(F loor[

Log[x2]
Log[2]

]−F loor[
Log[x2′]
Log[2]

)
× t× x2′ + z





.

The following comments help the reader understand the formula given above for the function of
the loop.

• It may be helpful to look at the intermediate results that were generated in the process of
computing the function of this loop; they are given in the file referenced above. This file
shows the source code of this program (pages 1 and 2), followed by the CCA code (pages 2,
3, 4 and 5), followed by three sets of equations that correspond to the three branches of the
CCA code/ the three execution paths of the source C++ code (pages 5, 7, 8 and 9), followed
by the result of merging the non-common equations that appear in the three branches, as
common equations are factored out before merge is called (page 9), followed by the result of

34

applying Mathematica to solve the merged equations in the primed variables as a function
of the unprimed variables. Pages 6 and 7 contain a table that shows all the recognizers that
were invoked in the analysis of this loop.

• The reader may notice that we have not been able to compute the final value of variable x2,
hence strictly speaking what we have here is not the function of the loop, but an approximation
(a fairly close approximation) of this function. We have determined that the reason for this
shortcoming is that the code submitted to Mathematica is missing one equation. There are
two possible remedies to this situation: either making some specific recognizers more generic,
so that it is easier to merge them; or making the merge function more effective, so that it can
generalize specific equations. This matter is currently under investigation, in the context of
evolving our tool from syntactic matching to semantic matching.

• Note that we are able to handle a fairly large program using recognizers that deal with no
more than three CCA statements at a time. If we represent CCA statements by nodes of
a graph and invariant relations generated from patterns of 2 or 3 CCA statements by arcs
between the statements in question, then we may be able to compute the function of the loop
as soon as the graph defined by these arcs is connected.

• Note also that the loop body of this program computes a Taylor series; when the cca2mat
recognizes a Taylor series, it replaces it by its closed form expression (in this case ex1) and
adjust with a residual term; this may explain the appearance of the Euler function (Γ) in the
expression of la′.

7 Concluding Remarks

7.1 Summary

In this paper we have reviewed three distinct but related concepts, namely invariant assertions,
invariant functions, and invariant relations. We have defined these concepts in relational terms,
and have analyzed their various attributes, including: how they relate to the function of the loop,
how they relate to the function of the loop body, how they are ordered, what is the weakest
invariant of each type, and what is the strongest invariant of each type. Also, we analyzed the
interrelationships among such invariants, by asking the questions: can we generate one type of
invariant from another; can all invariants of one type be generated from invariants of another type.
Among the main results of our study, we cite:

• All types of invariants involve searching a reflexive transitive superset of (T ∩B); but while in-
variant assertions seek an inductive relation and invariant functions seek a symmetric relation,
invariant relations impose no further conditions beyond reflexivity and transitivity.

• We can generate an invariant assertion from an invariant relation; furthermore, any invariant
assertion can be generated from an invariant relation. In other words, if we focus exclusively
on generating invariant relations, we necessarily cover all possible invariant assertions.

• Given a single invariant relation, we can generate a wide range of invariant assertions from
it, typically infinitely many (one for each arbitrary vector on S). On the other hand, an
arbitrary invariant relation cannot necessarily be generated from an invariant assertion, but

35

can be generated from a wide range of invariant assertions, typically infinitely many (one for
each element of S).

• Given an invariant function, we can use it to generate an invariant relation; and any invariant
function can be generated from an invariant relation. Hence, if we focus exclusively on
generating invariant relations, we necessarily cover all possible invariant functions.

• Given a symmetric invariant relation, we can generate a wide range of invariant functions,
typically infinitely many (one for each encoding of its equivalence classes). On the other hand,
an invariant relation cannot necessarily be generated from an invariant function.

• Given an invariant relation, we can use it to generate lower bounds for the function of the
loop in the lattice of refinement; with sufficient (and sufficiently refined) invariant relations,
we can compute the function of the loop.

We have also summarily discussed the design and implementation of a tool that uses invariant
functions and invariant relations to compute or approximate functions, and have illustrated it on
a sample example.

Perhaps the simplest and most compelling result of our study is the finding (in Proposition
11) that all invariant assertions are the relational product of two components: the inverse of an
invariant relation, which depends exclusively on the loop; the vector that represents the precondition
of the loop, which depends exclusively on the context in which the loop is used. This insight
may be used to streamline research on loop invariant generation [6, 8, 9, 15–17, 20, 21, 23, 24, 32–
34, 37, 39, 40, 42, 43, 46, 59, 61, 64].

7.2 Research Prospects

This being to a large extent a survey paper, we are not envisioning extensions of it per se, but we
will discuss extensions to our own work on invariant relations and invariant functions.

• Lifting the Hypothesis WL = L. This hypothesis has played an important role in the devel-
opment of our theory, and has made many of our results possible; for example, assuming that
W is total and deterministic allows us to claim that W is maximal in the refinement ordering,
hence can be approximated using only lower bounds. But in practice it is difficult/ unnatural
to separate the task of reasoning about the domain of W from the task of reasoning about its
expressions. Hence we envision to lift this hypothesis, to be able to reason about loops that
may or may not terminate.

• Functional Analysis of Loops. In addition to computing or approximating loop functions,
invariant relations can be used to generate invariant assertions (as we have discussed in
this paper), to generate weakest preconditions and strongest postconditions [55], to generate
termination conditions, and to verify the correctness of a loop with respect to a relational
specification.

• Generating Invariant Relations. The applicability of our work is critically dependent on our
ability to generate invariant relations from a static analysis of the source code of the loop. We
are currently evolving our tool (especially the cca2mat component) by replacing its syntactic
pattern matching with semantic pattern matching, by enriching its database of recognizers,
and by specializing it to specific application domains.

36

We feel that these concepts offer complementary information on the functional properties of a while
loop, and are worthy of further exploration.

7.3 Related Work

While we have isolated invariant relations as a worthy concept that carries intrinsic value, rather
than being an auxiliary to computing invariant assertions, we lay no claim to being the first to have
used them. We have encountered other works where invariant relations, or special forms thereof, are
computed and used in the analysis of while loops. In [7], Carrette and Janicki derive properties of
numeric iterative programs by modeling the iterative program as a recurrence relation, then solving
these equations. Typically, the equations obtained from the recurrence relations by removing the
recurrence variable are nothing but the reflexive transitive relations that we are talking about.
However, whereas the method of Carrette and Janicki is applicable only to numeric programs, ours
is applicable to arbitrary programs, provided we have adequate recognizers to match their control
structure, and adequate axiomatizations of their data structure.

In [59], Podelski and Rybalchenko introduce the concept of transition invariant, which is a
transitive (but not symmetric) superset of the loop body’s function. Of special interest are transitive
invariants which are well-founded (hence asymmetric); these are used to characterize termination
properties or liveness properties of loops. Transitive invariants are related to invariant relations in
the sense that they are both transitive supersets of the loop body. However, transition invariants
and invariant relations differ on a very crucial attribute: whereas the latter are reflexive, and are
used to capture what remains invariant from one iteration to the next, the former are asymmetric,
hence not reflexive, and are used to capture what changes from one iteration to the next.

In [26], Kovacs et. al. deploy an algorithm (Aligator) they have written in Mathematica to
generate invariant assertions of while loops using Cousot’s Abstract Interpretation [13, 14]. They
proceed by formulating then resolving the recurrence relations that are defined by the loop body,
much in the same way (except for the automation) as Carette and Janicki advocate [7]; once
they solve the recurrence relations, they obtain a binary relation beween the initial states and the
current state, from which they derive an invariant assertion by imposing the pre-conditions on the
initial state. Typically, this operation correspond to the formula that we propose in Proposition
9: the relation they find between initial and current states is an invariant relation (R); and initial
conditions they dictate on the initial state correspond to vector C of Proposition 9. Aligator does
not take the converse of the invariant relation (as dictated by Theorem 9: A = R̂C), nor does it
have to, since R is typically symmetric.

In [24], Furia and Meyer present an algorithm for generating loop invariants by generalizing the
postcondition of the loop. To this effect, they deploy a number of generalization techniques, such as
constant relaxation (replacing a constant by a variable), uncoupling (replacing two occurrences of
the same variable by different variables), term dropping (removing a conjunct), and variable aging
(replacing a variable by an expression it had prior to termination). This work differs from ours
in many ways, obviously, including that it does not distinguish between what is dependent on the
loop and what is dependent on its context (hence must be redone for the same loop whenever the
postcondition changes), that it is of a highly heuristic nature, and that it is highly syntactic (the
same postcondition written differently may yield a different result). Another important distinction,
of course, is that we analyze the loop as it is (without consideration of its specification), whereas
Furian and Meyer analyze it as it should be (assuming it is correct).

37

A Appendix: Invariant Assertions in Context

Throughout the paper, we have used a definition of invariant assertion that is dependent on the loop
but not on its context (specifically, the precondition and postcondition that frame it). The following
corollary shows how we can use the result of Proposition 9 to produce an invariant assertion that
is adequate for a proof of correctness with respect to a precondition/ postcondition pair.

Corollary 1 We consider the while loop w = {while t do b}, and the precondition /postcondition
specification (φ, ψ), which we represent relationally by the pair of vectors (Φ,Ψ). If R is an invariant
relation of w such that R̂Φ ∩ T ⊆ Ψ, then the following Hoare formula is valid:

{φ} w {ψ}.

Proof. We must identify an invariant assertion α (logical formula) that satisfies the following
conditions:

1. φ⇒ α,

2. {α ∧ t} b {α},

3. α ∧ ¬t⇒ ψ.

If we represent each logical formula by its vector, we find the following relational equations:

1. Φ ⊆ A,

2. A ∩ T ∩B ⊆ Â,

3. A ∩ T ⊆ Ψ.

If we take A = R̂Φ, then the first condition holds by virtue of the reflexivity of R, the second
condition holds by virtue of Proposition 9, and the third condition holds by hypothesis. qed

B Proof of Lemma, Proposition 12

We must prove:
(∩s∈SQs ∪Rs) = (∪X⊆S(∩s∈XQs) ∩ (∩s∈XRs)).

1. Proof of ⊇. We have to prove that for all X subset of S, we have

(∩s∈XQs) ∩ (∩s∈XRs) ⊆ (∩s∈SQs ∪Rs).

(∩s∈XQs) ∩ (∩s∈XRs)

⊆ { monotonicity }

(∩s∈XQs ∪Rs) ∩ (∩s∈XQs ∪Rs)

= { associativity }

(∩s∈SQs ∪Rs)

38

2. Proof of ⊆. We let t be an element of (∩s∈SQs ∪ Rs) and we use a pointwise argument. To
show that t is in (∪X⊆S(∩s∈XQs) ∩ (∩s∈XRs)) it suffices to find X such that

t ∈ (∩s∈XQs) ∩ (∩s∈X .

We take X = {s|t ∈ Qs}. We proceed as follows:

t ∈ (∩s∈XQs) ∩ (∩s∈XRs)

⇔ { definition of X, logic }

t ∈ (∩t∈QsQs) ∧ t ∈ (∩t6∈Qs
Rs)

⇔ { set theory }

true ∧ t ∈ (∩t6∈Qs
Rs)

⇔ { from t ∈ Qs ∪Rs and t 6∈ Qs, we infer t ∈ Rs }

true ∧ true .

Acknowledgement

The authors are very grateful to the anonymous reviewers for their courteous, constructive eval-
uation of this work, and very impressed by the truly outstanding quality of their reports. The
reviewers’ feedback has been a valuable resource that the authors have used to improve the form
and content of this paper.

References

[1] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. O’Hearn. Variance analyses from in-
variance analyses. In Proceedings of the 34th Annual Symposium on Principles of Programming
Languages, Nice, France, 2007.

[2] R.S. Bird and O. DeMoor. Algebra of Programming. Prentice Hall International, 1997.

[3] A. Blikle and A. Mazurkiewicz. An algebraic approach to the theory of algorithms, languages
and recursiveness. In Proceedings, First Conference on Mathamatical Foundations of Computer
Science, Jablona, Poland, 1972.

[4] N. Boudriga, F. Elloumi, and A. Mili. The lattice of specifications: Applications to a specifi-
cation methodology. Formal Aspects of Computing, 4:544–571, 1992.

[5] A. R. Bradley, Z. Manna, and H. B. Sipma. Termination analysis of integer linear loops. In
CONCUR, pages 488–502, 2005.

[6] E. Rodriguez Carbonnell and D. Kapur. Program verification using automatic generation
of invariants. In Proceedings, International Conference on Theoretical Aspects of Computing
2004, volume 3407, pages 325–340. Lecture Notes in Computer Science, Springer Verlag, 2004.

[7] J. Carette and R. Janicki. Computing properties of numeric iterative programs by symbolic
computation. Fundamentae Informatica, 80(1-3):125–146, March 2007.

39

[8] T. E. Cheatham and J. A. Townley. Symbolic evaluation of programs: A look at loop analysis.
In Proc. of ACM Symposium on Symbolic and Algebraic Computation, pages 90–96, 1976.

[9] M. A. Colon, S. Sankaranarayana, and H. B. Sipma. Linear invariant generation using non
linear constraint solving. In Proceedings, Computer Aided Verification, CAV 2003, volume
2725 of Lecture Notes in Computer Science, pages 420–432. Springer Verlag, 2003.

[10] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving conditional termi-
nation. In Proceedings of the 20th international conference on Computer Aided Verification,
CAV ’08, pages 328–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[11] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for system code. In Proceedings,
PLDI, pages 415–426, 2006.

[12] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In Proceedings
of the 2006 ACM SIGPLAN conference on Programming language design and implementation,
PLDI ’06, pages 415–426, New York, NY, USA, 2006. ACM.

[13] P. Cousot. Abstract interpretation. Technical Report www.di.ens.fr/c̃ousot/AI/, Ecole Nor-
male Superieure, Paris, France, August 2008.

[14] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analy-
sis of programs by construction or approximation of fixpoints. In Proceedings, Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, CA, 1977.

[15] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions: Mathematical
foundations. In Proceeding Proceedings of the 1977 symposium on Artificial intelligence and
programming languages. ACM, 1977.

[16] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on
the Principles of Programming Languages, pages 84–97, 1978.

[17] E. Denney and B. Fischer. A generic annotation inference algorithm for the safety certifica-
tion of automatically generated code. In Proceedings, the Fifth International Conference on
Generative programming and Component Engineering, Portland, Oregon, 2006.

[18] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[19] H. Doornbos, R. Backhouse, and J. ven der Woude. A calculational approach to mathematical
induction. Theoretical Computer Science, 179(1):103–135, 1997.

[20] M. D. Ernst, J. H Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao.
The Daikon system for dynamic detection of likely invariants. Science of Computer Program-
ming, 2006.

[21] T. Fahringer and B. Scholz. Advanced Symbolic Analysis for Compilers. Springer Verlag,
Berlin, Germany, 2003.

[22] R.W. Floyd. Assigning meaning to programs. Proceedings of the American Mathematical
Society Symposium in Applied mathematics, 19:19–31, 1967.

40

[23] J.C. Fu, F. B. Bastani, and I-L. Yen. Automated discovery of loop invariants for high assurance
programs synthesized using ai planning techniques. In HASE 2008: 11th High Assurance
Systems Engineering Symposium, pages 333–342, Nanjing, China, 2008.

[24] C. A. Furia and B. Meyer. Inferring loop invariants using postconditions. In Nachum Der-
showitz, editor, Festschrift in honor of Yuri Gurevich’s 70th birthday, Lecture Notes in Com-
puter Science. Springer-Verlag, August 2010.

[25] D. Gries. The Science of programming. Springer Verlag, 1981.

[26] M T C Group. Demo of Aligator. Technical report, Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland, 2010.

[27] S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and progress invariants for
bound analysis. In Proceedings of the 2009 ACM SIGPLAN conference on Programming lan-
guage design and implementation, Dublin, Ireland, June 2009.

[28] S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as constraint solving. In
Proceedings of the 2008 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’08, pages 281–292, New York, NY, USA, 2008. ACM.

[29] W. R. Harris, A. Lal, A. V. Nori, and S. K. Rajamani. Alternation for termination. In SAS,
pages 304–319, 2010.

[30] Th. A. Henzinger, Th. Hottelier, and L. Kovacs. Valigator: Verification tool with bound
and invariant generation. In Proceedings, LPAR08: International Conferences on Logic for
Programming, Artificial Intelligence and Reasoning, Doha, Qatar, November 2008.

[31] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576 – 583, October 1969.

[32] K. Hoder, L. Kovacs, and A. Voronkov. Interpolation and symbolic elimination in vampire. In
Proceedings, IJCAR, pages 188–195, 2010.

[33] L. Hu, M. Harman, R. Hierons, and D. Binkley. Loop squashing transformations for amorphous
slicing. In Proceedings, 11th Working Conference on Reverse Engineering. IEEE Computer
Society, 2004.

[34] R. Iosif, M. Bozga, F. Konecny, and T. Vojnar. Tool demonstration for the FLATA counter
automata toolset. In Proceedings, Workshop on Invariant Generation: WING 2010, Edimburg,
UK, July 2010.

[35] A. Jaoua, S. Elloumi, A. Hasnah, J. Jaam, and I. Nafkha. Discovering regularities in databases
using canonical decomposition of binary relations. JoRMiCS, 1:217–234, 2004.

[36] A. Jaoua, A. Mili, N. Boudriga, and J. L. Durieux. Regularity of relations: A measure of
uniformity. Theoretical Computer Science, 79(2):323–339, 1991.

[37] T. Jebelean and M. Giese. Proceedings, First International Workshop on Invariant Generation.
Research Institute on Symbolic Computation, Hagenberg, Austria, 2007.

41

[38] L. Kovacs. Automated invariant generation by algebraic techniques for imperative program
verification in theorema. Technical report, University of Linz, Linz, Austria, October 2007.

[39] L. Kovacs and T. Jebelean. Automated generation of loop invariants by recurrence solving
in theorema. In D. Petcu, V. Negru, D. Zaharie, and T. Jebelean, editors, Proceedings of the
6th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC04), pages 451–464, Timisoara, Romania, 2004. Mirton Publisher.

[40] L. Kovacs and T. Jebelean. An algorithm for automated generation of invariants for loops
with conditionals. In D. Petcu, editor, Proceedings of the Computer-Aided Verification on
Information Systems Workshop (CAVIS 2005), 7th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC 2005), pages 16–19, Department of
Computer Science, West University of Timisoara, Romania, 2005.

[41] L. Kovacs and A. Voronkov. Finding loop invariants for programs over arrays using a theorem
prover. In Proceedings, 11th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, Timisoara, Romania, September 2009.

[42] L. Kovacs and A. Voronkov. Finding loop invariants for programs over arrays using a theorem
prover. In Proceedings, FASE 2009, pages 470–485. LNCS 5503, Springer Verlag, 2009.

[43] D. Kroening, N. Sharygina, S. Tonetta, A. Letychevskyy Jr, S. Potiyenko, and T. Weigert.
Loopfrog: Loop summarization for static analysis. In Proceedings, Workshop on Invariant
Generation: WING 2010, Edimburg, UK, July 2010.

[44] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and Ch. M. Wintersteiger. Loop summa-
rization using abstract transformers. In Automated Technology for Verification and Analysis,
volume 5311/2008 of Lecture Notes in Computer Science, pages 111–125, 2008.

[45] A. Louhichi, O. Mraihi, W. Ghardallou, L. Labed Jilani, Kh. Bsaies, and A. Mili. Invariant
relations: An automated tool to analyze loops. In Proceedings, Verification and Evaluation of
Computer and Communications Systems, Tunis, Tunisia, 2011.

[46] E. Maclean, A. Ireland, and G. Grov. Synthesizing functional invariants in separation logic.
In Proceedings, Workshop on Invariant Generation: WING 2010, Edimburg, UK, July 2010.

[47] Z. Manna. A Mathematical Theory of Computation. McGraw Hill, 1974.

[48] A. Mazurkiewicz. Proving algorithms by tail function. Information and Control, 18:793–798,
1971.

[49] A. Mazurkiewicz. Iteratively computable relations. Bull. Acad. Polon. Sci, Ser. Sci. Math.
Astronom. Phys., 20:793–798, 1972.

[50] A. Mili. Reflexive transitive loop invariants: A basis for computing loop functions. In First
International Workshop on Invariant Generation, Hagenberg, Austria, June 2007.

[51] A. Mili, S. Aharon, and Ch. Nadkarni. Mathematics for reasoning about loop. Science of
Computer Programming, pages 989–1020, 2009.

42

[52] A. Mili, J. Desharnais, and J. R. Gagne. Strongest invariant functions: Their use in the
systematic analysis of while statements. Acta Informatica, April 1985.

[53] H.D. Mills. The new math of computer programming. Communications of the ACM, 18(1),
January 1975.

[54] C.C. Morgan. Programming from Specifications. International Series in Computer Sciences.
Prentice Hall, London, UK, 1998.

[55] O. Mraihi, W. Ghardallou, A. Louhichi, L. Labed Jilani, Kh. Bsaies, and A. Mili. Comput-
ing preconditions and postconditions of while loops. In Proceedings, ICTAC: International
Colloquium on Theoretical Aspects of Computing, Johannesburg, SA, 2011.

[56] J. N. Oliveira. Extended static checking by calculation using the pointfree transform. In
Lecture Notes in Computer Science, number 5520, pages 195–251. Springer Verlag, 2009.

[57] J.N. Oliveira. Pointfree foundations for (generic) lossless decomposition. Technical Report
TR-HASLab:3:2011, INSEC TEC, HASLab, 2011.

[58] J.N. Oliveira and C.J. Rodrigues. Pointfree factorization of operation refinement. In Lecture
Notes in Computer Science, number 4085, pages 236–251. Springer Verlag, 2006.

[59] A. Podelski and A. Rybalchenko. Transition invariants. In Proceedings, 19th Annual Sympo-
sium on Logic in Computer Science, pages 132–144, 2004.

[60] J. Riguet. Quelques proprietes des relations difonctionnelles. Comptes Rendus Hebdomadaires
des Seances de l’Academie des Sciences, 230:1999–2000, 1950.

[61] S. Sankaranarayana, H. B. Sipma, and Z. Manna. Non linear loop invariant generation using
Groebner bases. In Proceedings, ACM SIGPLAN Principles of Programming Languages, POPL
2004, pages 381–329, 2004.

[62] G. Schmidt. Relational Mathematics. Number 132 in Encyclopedia of Mathematics and its
Applications. Cambridge University Press, November 2010.

[63] H. Velroyen and Ph. Rümmer. Non-termination checking for imperative programs. In Bernhard
Beckert and Reiner Hähnle, editors, Tests and Proofs, Second International Conference, TAP
2008, Prato, Italy, volume 4966 of lncs, pages 154–170. spv, 2008.

[64] F. Zuleger and M. Sinn. LOOPUS: A tool for computing loop bounds for C programs. In
Proceedings, Workshop on Invariant Generation: WING 2010, Edimburg, UK, July 2010.

43

