Correctness and Relative Correctness

Nafi Diallo*, Wided Ghardalloly and Ali Mili*
*New Jersey Institute of Technology, Newark NJ 07102, USAI8@njit.edu, mili@njit.edu
TFaculty of Sciences of Tunis, University of Tunis El Managnisia, wided.ghardallou@gmail.com

Abstract—In the process of trying to define what is a software differs from these by referring to specifications ratherntha
fault, we have found that to formally define software faults we executable assertions, by capturing the semantics of amogr
need to introduce the concept of relative correctness, i.ethe with functions rather than execution traces, and by stuglyin

property of a program to be more-correct than another with lati t intrinsi W of intereith
respect to a given specification. A feature of a program is a fat relative correctiness as an Intrinsic property or interesh w

(for a given specification) only because there exists an ateative Broad applications, rather than simply a tool for program
to it that would make the program more-correct with respect repair.

to the specification. In this paper, we explore applicationsof
the concept of relative correctness in program testing, prgram
repair, and program design. Specifically, we argue that in may

situations of software testing, fault removal and program epair, We define the space of a program as the set of values that
testing for relative correctness rather than absolute corectness

leads to clearer conclusions and better outcomes. Also, weits variables may take, and define a state of a program as an

find that designing programs by stepwise correctness-enhaing €lement of its space. We define a specification on sisaas

transformations rather than by stepwise correctness-presrving a binary relation onS, and we represent the semantics of a

refinements leads to simpler programs and is more tolerant of programp on spaceS by the function denoted in upper case

designer mistakes. P that the program defines from its initial states to its final
I. WHAT IS A SOFTWARE FAULT ? states. Given a relatioR on .S, we denote the domain af

Il. CORRECTNESS ANDRELATIVE CORRECTNESS

In [1], Laprie et al. go to great lengths to define concepts aRy dor_'r(.}_%).) o
terminology pertaining to system dependability. In partée, Definition 1: Given a speC|f|cat|(_)rR_0n spaceS, and a
they define the standard hierarchyfafilt, error, andfailure: Programp on spaces whose function is denoted b¥, we
a fault is the adjudged or hypothesized cause of an error; 3 thatp is partially correct with respect toR if and only
error is the state of the system that may lead to its subsequéndom(R N P) = dom(R) N dom(P). Also, we say thap
failure; a failure is the event whereby the system fails #§ correct with respect toR if and only if: dom(R N P) =
meet its specification. In the context of software, it is lfair dom(R).
straightforward to characterize a failure: it is the evetiew Whenever we want to contrast correctness with partial cor-
the program produces an output that violates the specifitati’ectness, we may refer to it &stal correctnesswhenever we
It is much more difficult to characterize errors, because Wantto contrast correctness witlative correctnesgdefined
do so assumes that we have a clear characterization of wh@low), we may refer to it aabsolute correctness
state the program must be in at any stage in its executionDefinition 2: Given a specificationz on spaceS and two
it is even more difficult to characterize faults, becausedo ¢andidate programg andp’ on spaceS, we say thayp' is
so assumes that we can trace every error to a well-defif@@re-correcthanp with respect toR if and only if: dom(RN
feature of the program. In fact, the same program failure c&h € dom(R N P’). Also, we say that program'’ is strictly
be remedied in more than one way, involving more than otf@ore-correctthanp with respect tar if and only if: dom(RN
location in the program, and possibly involving more thae on’) C dom(Z N P’).
type of remedy. Hence in practice, neither the number, ner thhe expressiomlom(R N P) represents the set of initial states
location, nor the nature of faults can be uniquely defined. on which progranp behaves as specificatiaR dictates; we

In [9] we introduce the concept afelative correctness call this thecompetence domaiaf programp; to be more-
an ordering relation that ranks candidate programs by h@@rrect simply means to have a larger competence domain,
close they are to being (totally) correct with respect to lut it does not mean that prograshis identical to progranp
given specification, and we use this ordering to define pragran the competence domain of the latter; see Figure 1. In this
faults: A fault in a given program with respect to a giveexample, we finddomRNP’) = {1,2,3,4,5} anddom RN
specification is a program part (which can be an expressionPa = {1,2,3,4}. Thereforep’ is more-correct thamp with
statement, a block of statements, or a set of non contingugaspect toR; yet, p’ does not copy the correct behavior of
statements) which admits a substitute that would make the its competence domain.
program more-correct with respect to the specificatione®th How do we know that our definition of relative correctness
researchers have felt it necessary, as we did, to introdusesound? We have reviewed a number of properties that we
a concept of relative correctness [8], and to test or prowould want a definition of relative correctness to have, and
programs for relative correctness [7], [5], [11]; our apgsb found that our definition satisfies them all:

7N
A

Fig. 2. A Mutant May Succeed of', yet not be more-correct

O, WNEFO

O, WNEFO
w
w
w
w

D’

Fig. 1. Enhancing Correctness Without Duplicating Behavio

« Relative Correctness Culminates in Absolute Correctness
Indeed, it is very easy to see, from the definitions of
correctness and relative correctness that if a program is /_\
(absolutely) correct with respect t8, then it is more-
correct than any candidate program with respeckto

« Relative Correctness Implies Higher Reliabilityrhe
probability of successful execution of the program on a

randomly chosen initial state is equal to the integral of \,é >T

the probability distribution over the competence domain u
CD'

of the program; hence the larger the competence domain,
the higher the reliability.
« Relative Correctness as Pointwise Refineméve have
found in [9] that if and only if a program’ refines a Fig. 3. A Mutant May Fail o, yet be more-correct
programp, thenp’ is more-correct thap with respect to
any specificationr.)
« A mutant may fail on the test data and yet be more-correct
II1. APPLICATIONS OFRELATIVE CORRECTNESS than the original. See Figure 3.

A. A Model for Monotonic Fault Removal The main reason why these techniques select the wrong

As programmers, we are all too familiar with Situationgnutants and rejeCt the wrong mutants (le mutants thatidhou
where we attempt to remove faults from a program, only feave been selected) is that they are testing mutants folubso
find that whenever we correct the behavior of the program féerrectness rather than relative correctness.
some inputs, it fails for others. So that rather than beingc';\ Robust Software Design
monotonic process of stepwise improvement of the program,
the fault removal process is a frustrating exercise of feet ~ Software design by successive refinements generates a pro-
cycling, where we remove an obvious fault only to replace @amm from a specificationz by successive transformations
with a more subtle fault. We argue that a program transformgfarting with? and ending withr, such that at each step, an in-
tion should not be considered a fault removal unless we ctimediate representatignis transformed into a more refined
establish that it has made the program strictly more-carretepresentation’. We have seen in Section Il that refines
In the same way that program design can be modeled ag # and only if p’ is more-correct thap with respect to any
sequence of Correctness-preserving Stepwise refinenrents fSpeCiﬁcation. This raises the queStion: Why would we want to
the specification to the programrogram fault removal can makep’ more-correct thap with respect taall specifications,

be modeled as a sequence of correctness-enhancing transfgien all we care about is specificatidt? We argue that it
mations from an incorrect program to a correct program is sufficient to mandate that each transformation prOdUCES a

representatiop’ that is more-correct thapwith respect taR.
B. Mutation Based Program Repair This requires that we redefine relative correctness to ajoply
Automated software repair has achieved great strides ninn-deterministic representations, but such a criterifier®
developing tools and techniques to identify and removetdausome advantages:
in software products [6], [10], [12], [3], [13], [2]. We argu ., A Fault Tolerant Processin program construction by
that program repair can be improved and made more efficientif stepwise refinements, if one step fails to produce an
instead of testing candidate mutants for correctness, stede artifact that refines the previous artifact, then the remain
them for relative correctness. Specifically: der of the design process is doomed. By contrast, in
« A mutant may run successfully on the test data and still correctness-enhancing transformations, a design fault in
not be more-correct than the original. See Figure 2, where one step may be remedied in subsequent steps.
CD and CD’ represent (respectively) the competence « Simpler Designs We illustrate this premise with an
domain of the original program, and that of the mutant, example: LetR be the specification on spaSedefined by
andT represents the test data set. integer variables: andy and relationR = {(s, s')|z’ =

x + y}, and letp be an intermediate artifact definedanother using invariant relations. Due to space restristiove

as: {while (y!'=0) {y=y-1; x=x+1;}}, and let do not give this theorem here, but discuss how to use it; to
p’ and p” be defined as, respectivelp’ : {x=x+y; this effect, we need to briefly present invariant relationd a
y=0; } andp’’: {x=x+y;}. We find thatp” does their use in the analysis of while loops. We consider a while
not refinep, but it is more-correct thap with respect loop w on spaceS, of the form{while (t) {b}}, and

to R; while p’ refinesp, hence is more-correct thgm we let R be a specification o$. An invariant relation forw

with respect to any specification, includidgy Imposing is a reflexive transitive superset ¢f' N B), where B is the
refinement rather than relative correctness forces usftmction of b and7 is a representation dfin relational form:
generate a more complex artifagt’ (rather thanp”), T = {(s,s')|t(s)}. Invariantrelations are useful in the analysis
as it includes more requirements (relative correctnesswhile loops because they enable us to prove claims about
with respect to all specifications, rather than relativihe functional properties of a while loop without having to
correctness with respect i@ alone). compute its functionl{’). In particular, we have two invariant
relation-based conditions of correctness of a while looh wi
respect to a relational specificatidt

_ Now that we have defined relative correctness, shown that, A g ficient condition of correctness, which holds when-
it satisfies all the desirable properties we associate with
this concept, and discussed possible applications thenaof
address the question: How do we prove relative correctness
between two programs with respect to a given specification?

IV. ESTABLISHING RELATIVE CORRECTNESS

ever the given invariant relation subsumes the target
specification.

A necessary condition of correctness, whose negation
we use as a sufficient condition of incorrectness: the
necessary condition derived from an invariant relatipn

is false whenever the invariant relation is incompatible
with the specification, i.e. no while loop that admifs

as an invariant relation could possibly be correct with
respect toR. When an invariant relatiod’ does satisfy
(with R) the necessary condition of correctness, we say

A. Testing for Relative Correctness

How does one test a program for relative correctness over
another program with respect to a specification, and how is
this different from testing a program for absolute corress?

We argue that testing a program for relative correctness has

ljrgg:;:r?tlons for test data generation, as well as for teatler that it is compatiblewith R.

« Test Data GeneratiarThe essence of test data generatio-’:lhe 9'?‘ of the thgorem C'.ted abov_e 'S that if a Wh”.e loop
is to substitute a large set, say which is too large to w admits an invariant relatio that is incompatible with a

be tested exhaustively, by a smaller representative S%QeuflcatlonR, then the wh|le loop is nece_ssanly mcprrect
Ii th respect toR (hence in need of repair); then, if the

sayT, such that if a candidate program runs successfulfyy" ' ; , .
on setT’, we can conclude, with some confidence, that op 1S transformed intay’ that has the_ same c_ompanble
Invariant relations but now has a compatible invarianttieta

runs successfully on sé&t. To test progranp for absolute ¢ bstitute f h S tth ith i
correctness with respect), setX is dom(R), whereas g;u stitute for, thenw’ is more-correct tham with respec

to test programp’ for relative correctness over a progra))) _

p, ety is domR N P). Using an invariant relations generator, we proceed as fol-
« Test Oracle Design_etw(s, s’) be the oracle used to testOWS:

candidate programs for absolute correctness with respece We generate all the invariant relations we can (depending

to R. The oracle that must be used to test a proggam on how many code patterns we recognize in the loop).

for relative correctness over progranwith respect toR « If the intersection of all the invariant relations satisfies

is then:Q(s, s') = (w(s, P(s)) = w(s, §)). the sufficient condition of correctness, then we conclude

that the loop is correct, and no repair is needed.

B. Proving Relative Correctness « If all the generated invariant relations are compatible but

To prove that a programl is more-correct than a progrgm
with respect to a specificatiaR, we can compute their respec-
tive competence domains with respecfi@nd compare them;

of course, computing the competence domain of a programe

is virtually impossible for all but the simplest programsdan
specifications, since it requires that we compute the fonsti

their intersection does not subsume the specification, then
we conclude that we are unable to determine whether the
loop is correct.

If at least one invariant relation, say, is incompatible
with R, then we conclude thab is incorrect, hence in
need of repair. We consider the variables that are involved

of the candidate program in all its minute detail. In the long
term, we need to find ways to prove relative correctness

in the definition ofQ and we resolve that these are the
program variables that must be changed in the program.

without computing the competence domains of the candidate In order to get some guidance on how to change these

programs (for example, by approximatidgm(R N P) by an
upper bound andom(R N P’) by a lower bound).

In the meantime, we have a theorem (due to [4]) that

establishes the relative correctness of an iterative progiver

variables, we use the constraint that these variables must
be changed in such a way as to preserve the compatible
relations. Even if it does not specify uniquely how we

should change the code that alters these variables, this

constraint reduces the range of changes that we aaot mean our fault removal was wrong: when we run this loop
make. For each mutant, we recompute the correspondimg randomly generated test data using the oracle of relative
invariant relation and check whether it is now compatibleorrectness? (section 1V-A), it runs for over eight hundred
if it is, then the mutant is selected as the proposed rep#iousand test data without failurdndeed,w’ is provably
to the original loop. No testing is necessary. more-correct thamw, though it may still be incorrect. Running
Note that this procedure does not require that we generi@ invariant relations generator on the new loop produces
all the compatible invariant relations of the loop, but itedo fourteen invariant relations, one of which is incompatiwiéh
require that we generate all the invariant relations thaslie 2 (hencew’ is indeed incorrect); it seems that by removing
the variables that appear in the definition@f Indeed, if an the earlier fault we have remedied four invariant relatians
invariant relationC; does not involve these variables then iPnce. Applying the same processu, we find the following
is automatically preserved when we alter them, whether 0P, Which is correct with respect th:
generate it or not. The only practical interest of gene@atin:. wni| e (abs(r-p) >upsi | on)

many compatible invariant relations is that they help usnaefi {t=t+1; n=n+x: mEmrl; | =l *(1+b):

a stronger constraint, hence reduce the number of candidate | -\ +1000- y=n+k: wewtz; z=(1+a)*z;
mutants that we have to consider. v=wrk: r=(v-y)/y: u=(mn)/n; d=r-u:}

C. lllustration Acknowledgement. The authors are grateful to the anonynteus

We consider the following loop, taken from a C++ financiatiewers for their valuable feedback. This publication waade
app”cation’ where all the variables except are of type possible by a grant from the Qatar national Research Fund@9RR

doubl e, and wherez andb are positive constants. 1109-1-174. Its contents are solely the responsibilityhef authors

.) and do not necessarily represent the official views of QNRF.
w. while (abs(r-p)>upsilon)

{t=t+1; n=n+x; nEm1; |=l+(1+b); REFERENCES
k=k+1000; y=n+k; w=wtz; z=(1+a)+z; [1] Algirdas Avizienis, Jean Claude Laprie, Brian Randehd Carl E
v=wtk; r:(V- y) / y; u:(m n)/ n; d=r-u; } Landwehr. Basic concepts and taxonomy of dependable andesec
computing. IEEE Transactions on Dependable and Secure Computing
We consider the following specification: 1(1):11-33, 2004. _ o
[2] Gopinath D., Malik M.Z., and Khurshid S. Specificatioaded program
1— (1 4 a)t’—t repair using sat. IfProceedings, TACASages 173-188, 2011.
R={(s,8)|b<a< 1At =z Aw =w—z2x—————— [3] Kim D., Nam J., Song J., and Kim S. Automatic patch gerierat
a learned from human-written patches. IBSE 2013 pages 802-811,
I _ / / ’ 2013.
AE =k +1000 x (£ —t) At <t AO<I<I'Az>0 [4] Nafi Diallo, Wided Ghardallou, Marcelo Frias, Ali Jaousd Al Mili
4 , _y What is a fault? and why does it matter? Technical reportTNNewark,
AN X (1T+b)"=Ux(1+b)""}. NJ, http://web.njit.edu/milifjr.pdf, 2015.
[5] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul SharmaydaChris
Analysis of this loop by an invariant relations generatainass Hawblitzel. Differential assertion checking. IRroceedings, ESEC/
; ; ; ; ; SIGSOFT FSEpages 345-455, 2013.
fourteen .Invarla.'m relatlons.’.flve. of which are found to .be[6] Claire LeGoues, Stephanie Forrest, and Westley Weim&urrent
!ncompat!ble _W|th _the spec_n‘lcanon. We _Se_|ECt the follogvin challenges in automatic software repaiiSoftware Quality Journal
incompatible invariant relation for remediation: 21(3):421-443, 2013.
, [7] Francesco Logozzo and Thomas Ball. Modular and verifietbraatic
_ / - 7 — 1 program repair. IrProceedings, OOPSL Aages 133-146, 2012.
Q {(S’ 5)|l X (1 + b) P (1 + b) } [8] Francesco Logozzo, Shuvendu Lahiri, Manual Faehndrimhd San

. . e . Blackshear. Verification modulo versions: Towards usalggfieation.
To remediate this incompatibility, we must alter variakle In Proceedings, PLDI2014.

or variable!. We compute the condition om and [under [9] Ali Mili, Marcelo Frias, and Ali Jaoua. On faults and faylprograms.
which a change in these variables does not alter any of the In Peter Hoefner, Peter Jipsen, Wolfram Kahl, and Martirc Bfueller,

. . .. - editors, Proceedings, RAMICS: 14th International Conference on Re-
relevant compatlble relations, and we find: > z A (l - lational and Algebraic Methods in Computer Scient@cture Notes

I"vix (" —1) > 0). We focus our attention on variable in Computer Science, Marienstatt, Germany, April 28-May 2814.
z, and apply common mutation operators to the statement Springer.

. 10] Martin Monperrus. A critical review of path generatidearned from
{Z - (1+a) +Z} while preservmg the condition’ > z; human written patches: Essay on the problem statement abgagéen

for each mutant of this statement, we recompute the new of automatic software repair. IRroceedings, ICSE 2014yderabad,
invariant relation that substitutes f@ and check whether it is India, 2014.

; . N _ [11] Hoang Duong Thien Nguyen, DaWei Qi, Abhik Roychoudhuand
compatlble withR. We find that the statemetﬁt—(1+a) * Z} Satish Chandra. Semfix: Program repair via semantic asaly$n

produces a compatible invariant relation, and concludé tha Proceedings, ICSEpages 772781, 2013.

the loop w’ obtained when we replacéz=(1+a)+z} by [12] Pefbfoli’\/- and Wonglr\g-E- USdihg multgts'%nztg f&tomatg?%ge;é%es
_ . . o faulty programs. IrProceedings, ages 65-74, .
{Z_(1+a) *Z} is more-correct tham with respect tokR. To [13] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Bholz,

illustrate the contrast between absolute correctnessaeaitive Bertrand Meyer, and Andreas Zeller. Automated fixing of pangs
correctness, we generate random test data’ run the |00p on it with contracts. InISSTA 2010: Proceedings of the 19th international

. symposium on Software testing and analypmges 61-72, New York,
and check the oracle for absolute correctnesserived from NY, July 2010. ACM.

specificationR; the loop fails at the third tesBut this does

