
Correctness and Relative Correctness
Nafi Diallo∗, Wided Ghardallou†, and Ali Mili ∗

∗New Jersey Institute of Technology, Newark NJ 07102, USA, ncd8@njit.edu, mili@njit.edu
†Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia, wided.ghardallou@gmail.com

Abstract—In the process of trying to define what is a software
fault, we have found that to formally define software faults we
need to introduce the concept of relative correctness, i.e.the
property of a program to be more-correct than another with
respect to a given specification. A feature of a program is a fault
(for a given specification) only because there exists an alternative
to it that would make the program more-correct with respect
to the specification. In this paper, we explore applicationsof
the concept of relative correctness in program testing, program
repair, and program design. Specifically, we argue that in many
situations of software testing, fault removal and program repair,
testing for relative correctness rather than absolute correctness
leads to clearer conclusions and better outcomes. Also, we
find that designing programs by stepwise correctness-enhancing
transformations rather than by stepwise correctness-preserving
refinements leads to simpler programs and is more tolerant of
designer mistakes.

I. WHAT IS A SOFTWARE FAULT ?

In [1], Laprie et al. go to great lengths to define concepts and
terminology pertaining to system dependability. In particular,
they define the standard hierarchy offault, error, and failure:
a fault is the adjudged or hypothesized cause of an error; an
error is the state of the system that may lead to its subsequent
failure; a failure is the event whereby the system fails to
meet its specification. In the context of software, it is fairly
straightforward to characterize a failure: it is the event when
the program produces an output that violates the specification.
It is much more difficult to characterize errors, because to
do so assumes that we have a clear characterization of what
state the program must be in at any stage in its execution;
it is even more difficult to characterize faults, because to do
so assumes that we can trace every error to a well-defined
feature of the program. In fact, the same program failure can
be remedied in more than one way, involving more than one
location in the program, and possibly involving more than one
type of remedy. Hence in practice, neither the number, nor the
location, nor the nature of faults can be uniquely defined.

In [9] we introduce the concept ofrelative correctness,
an ordering relation that ranks candidate programs by how
close they are to being (totally) correct with respect to a
given specification, and we use this ordering to define program
faults: A fault in a given program with respect to a given
specification is a program part (which can be an expression, a
statement, a block of statements, or a set of non continguous
statements) which admits a substitute that would make the
program more-correct with respect to the specification. Other
researchers have felt it necessary, as we did, to introduce
a concept of relative correctness [8], and to test or prove
programs for relative correctness [7], [5], [11]; our approach

differs from these by referring to specifications rather than
executable assertions, by capturing the semantics of programs
with functions rather than execution traces, and by studying
relative correctness as an intrinsic property of interest with
broad applications, rather than simply a tool for program
repair.

II. CORRECTNESS ANDRELATIVE CORRECTNESS

We define the space of a program as the set of values that
its variables may take, and define a state of a program as an
element of its space. We define a specification on spaceS as
a binary relation onS, and we represent the semantics of a
programp on spaceS by the function denoted in upper case
P that the program defines from its initial states to its final
states. Given a relationR on S, we denote the domain ofR
by dom(R).

Definition 1: Given a specificationR on spaceS, and a
programp on spaceS whose function is denoted byP , we
say thatp is partially correct with respect toR if and only
if: dom(R ∩ P) = dom(R) ∩ dom(P). Also, we say thatp
is correct with respect toR if and only if: dom(R ∩ P) =
dom(R).

Whenever we want to contrast correctness with partial cor-
rectness, we may refer to it astotal correctness; whenever we
want to contrast correctness withrelative correctness(defined
below), we may refer to it asabsolute correctness.

Definition 2: Given a specificationR on spaceS and two
candidate programsp and p′ on spaceS, we say thatp′ is
more-correctthanp with respect toR if and only if: dom(R∩
P) ⊆ dom(R ∩ P ′). Also, we say that programp′ is strictly
more-correctthanp with respect toR if and only if: dom(R∩
P) ⊂ dom(R ∩ P ′).

The expressiondom(R∩P) represents the set of initial states
on which programp behaves as specificationR dictates; we
call this thecompetence domainof programp; to be more-
correct simply means to have a larger competence domain,
but it does not mean that programp′ is identical to programp
on the competence domain of the latter; see Figure 1. In this
example, we find:dom(R∩P ′) = {1, 2, 3, 4, 5} anddom(R∩
P) = {1, 2, 3, 4}. Thereforep′ is more-correct thanp with
respect toR; yet, p′ does not copy the correct behavior ofp

on its competence domain.
How do we know that our definition of relative correctness

is sound? We have reviewed a number of properties that we
would want a definition of relative correctness to have, and
found that our definition satisfies them all:

6
5
4
3
2
1
0

6
5
4
3
2
1
0

6
5
4
3
2
1
0

6
5
4
3
2
1
0

6
5
4
3
2
1
0

6
5
4
3
2
1
0

�
�

�
��:

X
X

X
XXz�

�
�

��:

X
X

X
XXz�

�
�

��:

X
X

X
XXz�

�
�

��:

X
X

X
XXz�

�
�

��:

�
�

�
��:

�
�

�
��:

�
�

�
��:

�
�

�
��:

�
�

�
��:

�
�

�
��:

X
X

X
XXz

X
X

X
XXz

X
X

X
XXz

X
X

X
XXz

X
X

X
XXz

X
X

X
XXz

R P ′P

Fig. 1. Enhancing Correctness Without Duplicating Behavior

• Relative Correctness Culminates in Absolute Correctness.
Indeed, it is very easy to see, from the definitions of
correctness and relative correctness that if a program is
(absolutely) correct with respect toR, then it is more-
correct than any candidate program with respect toR.

• Relative Correctness Implies Higher Reliability. The
probability of successful execution of the program on a
randomly chosen initial state is equal to the integral of
the probability distribution over the competence domain
of the program; hence the larger the competence domain,
the higher the reliability.

• Relative Correctness as Pointwise Refinement. We have
found in [9] that if and only if a programp′ refines a
programp, thenp′ is more-correct thanp with respect to
any specificationR.

III. A PPLICATIONS OFRELATIVE CORRECTNESS

A. A Model for Monotonic Fault Removal

As programmers, we are all too familiar with situations
where we attempt to remove faults from a program, only to
find that whenever we correct the behavior of the program for
some inputs, it fails for others. So that rather than being a
monotonic process of stepwise improvement of the program,
the fault removal process is a frustrating exercise of faultre-
cycling, where we remove an obvious fault only to replace it
with a more subtle fault. We argue that a program transforma-
tion should not be considered a fault removal unless we can
establish that it has made the program strictly more-correct.
In the same way that program design can be modeled as a
sequence of correctness-preserving stepwise refinements from
the specification to the program,program fault removal can
be modeled as a sequence of correctness-enhancing transfor-
mations from an incorrect program to a correct program.

B. Mutation Based Program Repair

Automated software repair has achieved great strides in
developing tools and techniques to identify and remove faults
in software products [6], [10], [12], [3], [13], [2]. We argue
that program repair can be improved and made more efficient if
instead of testing candidate mutants for correctness, we tested
them for relative correctness. Specifically:

• A mutant may run successfully on the test data and still
not be more-correct than the original. See Figure 2, where
CD and CD′ represent (respectively) the competence
domain of the original program, and that of the mutant,
andT represents the test data set.

�
�
�
�T

#
"

!CD′

#

"

!CD

Fig. 2. A Mutant May Succeed onT , yet not be more-correct

�

�

�

�CD

'

&

$

%CD′

�
�

�
�T

Fig. 3. A Mutant May Fail onT , yet be more-correct

• A mutant may fail on the test data and yet be more-correct
than the original. See Figure 3.

The main reason why these techniques select the wrong
mutants and reject the wrong mutants (i.e. mutants that should
have been selected) is that they are testing mutants for absolute
correctness rather than relative correctness.

C. Robust Software Design

Software design by successive refinements generates a pro-
gramπ from a specificationR by successive transformations
starting withR and ending withπ, such that at each step, an in-
termediate representationp is transformed into a more refined
representationp′. We have seen in Section II thatp′ refines
p if and only if p′ is more-correct thanp with respect to any
specification. This raises the question: why would we want to
makep′ more-correct thanp with respect toall specifications,
when all we care about is specificationR? We argue that it
is sufficient to mandate that each transformation produces a
representationp′ that is more-correct thanp with respect toR.
This requires that we redefine relative correctness to applyto
non-deterministic representations, but such a criterion offers
some advantages:

• A Fault Tolerant Process. In program construction by
stepwise refinements, if one step fails to produce an
artifact that refines the previous artifact, then the remain-
der of the design process is doomed. By contrast, in
correctness-enhancing transformations, a design fault in
one step may be remedied in subsequent steps.

• Simpler Designs. We illustrate this premise with an
example: LetR be the specification on spaceS defined by
integer variablesx andy and relationR = {(s, s′)|x′ =

x + y}, and let p be an intermediate artifact defined
as: {while (y!=0) {y=y-1; x=x+1;}}, and let
p′ and p′′ be defined as, respectively:p’: {x=x+y;
y=0;} and p’’: {x=x+y;}. We find that p′′ does
not refinep, but it is more-correct thanp with respect
to R; while p′ refinesp, hence is more-correct thanp
with respect to any specification, includingR. Imposing
refinement rather than relative correctness forces us to
generate a more complex artifact (p′ rather thanp′′),
as it includes more requirements (relative correctness
with respect to all specifications, rather than relative
correctness with respect toR alone).

IV. ESTABLISHING RELATIVE CORRECTNESS

Now that we have defined relative correctness, shown that
it satisfies all the desirable properties we associate with
this concept, and discussed possible applications thereof, we
address the question: How do we prove relative correctness
between two programs with respect to a given specification?

A. Testing for Relative Correctness

How does one test a program for relative correctness over
another program with respect to a specification, and how is
this different from testing a program for absolute correctness?
We argue that testing a program for relative correctness has
implications for test data generation, as well as for test oracle
design:

• Test Data Generation. The essence of test data generation
is to substitute a large set, sayΣ, which is too large to
be tested exhaustively, by a smaller representative set,
sayT , such that if a candidate program runs successfully
on setT , we can conclude, with some confidence, that it
runs successfully on setΣ. To test programp for absolute
correctness with respect toR, setΣ is dom(R), whereas
to test programp′ for relative correctness over a program
p, setΣ is dom(R ∩ P).

• Test Oracle Design. Let ω(s, s′) be the oracle used to test
candidate programs for absolute correctness with respect
to R. The oracle that must be used to test a programp′

for relative correctness over programp with respect toR
is then:Ω(s, s′) ≡ (ω(s, P (s)) ⇒ ω(s, s′)).

B. Proving Relative Correctness

To prove that a programp′ is more-correct than a programp
with respect to a specificationR, we can compute their respec-
tive competence domains with respect toR and compare them;
of course, computing the competence domain of a program
is virtually impossible for all but the simplest programs and
specifications, since it requires that we compute the functions
of the candidate program in all its minute detail. In the long
term, we need to find ways to prove relative correctness
without computing the competence domains of the candidate
programs (for example, by approximatingdom(R∩P) by an
upper bound anddom(R ∩ P ′) by a lower bound).

In the meantime, we have a theorem (due to [4]) that
establishes the relative correctness of an iterative program over

another using invariant relations. Due to space restrictions, we
do not give this theorem here, but discuss how to use it; to
this effect, we need to briefly present invariant relations and
their use in the analysis of while loops. We consider a while
loop w on spaceS, of the form {while (t) {b}}, and
we let R be a specification onS. An invariant relation forw
is a reflexive transitive superset of(T ∩ B), whereB is the
function of b andT is a representation oft in relational form:
T = {(s, s′)|t(s)}. Invariant relations are useful in the analysis
of while loops because they enable us to prove claims about
the functional properties of a while loop without having to
compute its function (W). In particular, we have two invariant
relation-based conditions of correctness of a while loop with
respect to a relational specificationR:

• A sufficient condition of correctness, which holds when-
ever the given invariant relation subsumes the target
specification.

• A necessary condition of correctness, whose negation
we use as a sufficient condition of incorrectness: the
necessary condition derived from an invariant relationQ

is false whenever the invariant relation is incompatible
with the specification, i.e. no while loop that admitsQ

as an invariant relation could possibly be correct with
respect toR. When an invariant relationC does satisfy
(with R) the necessary condition of correctness, we say
that it is compatiblewith R.

The gist of the theorem cited above is that if a while loop
w admits an invariant relationQ that is incompatible with a
specificationR, then the while loop is necessarily incorrect
with respect toR (hence in need of repair); then, if the
loop is transformed intow′ that has the same compatible
invariant relations but now has a compatible invariant relation
to substitute forQ, thenw′ is more-correct thanw with respect
to R.

Using an invariant relations generator, we proceed as fol-
lows:

• We generate all the invariant relations we can (depending
on how many code patterns we recognize in the loop).

• If the intersection of all the invariant relations satisfies
the sufficient condition of correctness, then we conclude
that the loop is correct, and no repair is needed.

• If all the generated invariant relations are compatible but
their intersection does not subsume the specification, then
we conclude that we are unable to determine whether the
loop is correct.

• If at least one invariant relation, sayQ, is incompatible
with R, then we conclude thatw is incorrect, hence in
need of repair. We consider the variables that are involved
in the definition ofQ and we resolve that these are the
program variables that must be changed in the program.
In order to get some guidance on how to change these
variables, we use the constraint that these variables must
be changed in such a way as to preserve the compatible
relations. Even if it does not specify uniquely how we
should change the code that alters these variables, this

constraint reduces the range of changes that we can
make. For each mutant, we recompute the corresponding
invariant relation and check whether it is now compatible;
if it is, then the mutant is selected as the proposed repair
to the original loop. No testing is necessary.

Note that this procedure does not require that we generate
all the compatible invariant relations of the loop, but it does
require that we generate all the invariant relations that involve
the variables that appear in the definition ofQ. Indeed, if an
invariant relationCi does not involve these variables then it
is automatically preserved when we alter them, whether we
generate it or not. The only practical interest of generating
many compatible invariant relations is that they help us define
a stronger constraint, hence reduce the number of candidate
mutants that we have to consider.

C. Illustration

We consider the following loop, taken from a C++ financial
application, where all the variables exceptt are of type
double, and wherea andb are positive constants.

w: while (abs(r-p)>upsilon)
{t=t+1; n=n+x; m=m-1; l=l*(1+b);
k=k+1000; y=n+k; w=w+z; z=(1+a)+z;
v=w+k; r=(v-y)/y; u=(m-n)/n; d=r-u;}

We consider the following specification:

R = {(s, s′)|b < a < 1∧x′ = x∧w′ = w−z×
1 − (1 + a)t

′
−t

a

∧k′ = k + 1000× (t′ − t) ∧ t ≤ t′ ∧ 0 < l ≤ l′ ∧ z > 0

∧l × (1 + b)−t = l′ × (1 + b)−t
′

}.

Analysis of this loop by an invariant relations generator derives
fourteen invariant relations, five of which are found to be
incompatible with the specification. We select the following
incompatible invariant relation for remediation:

Q = {(s, s′)|l × (1 + b)−
z

1+a = l′ × (1 + b)−
z
′

1+a }.

To remediate this incompatibility, we must alter variablez

or variable l. We compute the condition onz and l under
which a change in these variables does not alter any of the
relevant compatible relations, and we find:z′ ≥ z ∧ (l =
l′ ∨ l × (l′ − l) > 0). We focus our attention on variable
z, and apply common mutation operators to the statement
{z = (1+a)+z} while preserving the conditionz′ ≥ z;
for each mutant of this statement, we recompute the new
invariant relation that substitutes forQ and check whether it is
compatible withR. We find that the statement{z=(1+a)*z}
produces a compatible invariant relation, and conclude that
the loop w′ obtained when we replace{z=(1+a)+z} by
{z=(1+a)*z} is more-correct thanw with respect toR. To
illustrate the contrast between absolute correctness and relative
correctness, we generate random test data, run the loop on it,
and check the oracle for absolute correctnessω derived from
specificationR; the loop fails at the third test.But this does

not mean our fault removal was wrong: when we run this loop
on randomly generated test data using the oracle of relative
correctnessΩ (section IV-A), it runs for over eight hundred
thousand test data without failure. Indeed,w′ is provably
more-correct thanw, though it may still be incorrect. Running
the invariant relations generator on the new loop produces
fourteen invariant relations, one of which is incompatiblewith
R (hencew′ is indeed incorrect); it seems that by removing
the earlier fault we have remedied four invariant relationsat
once. Applying the same process tow′, we find the following
loop, which is correct with respect toR:

wc: while (abs(r-p)>upsilon)
{t=t+1; n=n+x; m=m+1; l=l*(1+b);
k=k+1000; y=n+k; w=w+z; z=(1+a)*z;
v=w+k; r=(v-y)/y; u=(m-n)/n; d=r-u;}

Acknowledgement. The authors are grateful to the anonymousre-
viewers for their valuable feedback. This publication was made
possible by a grant from the Qatar national Research Fund NPRP04-
1109-1-174. Its contents are solely the responsibility of the authors
and do not necessarily represent the official views of QNRF.

REFERENCES

[1] Algirdas Avizienis, Jean Claude Laprie, Brian Randell,and Carl E
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, 2004.

[2] Gopinath D., Malik M.Z., and Khurshid S. Specification-based program
repair using sat. InProceedings, TACAS, pages 173–188, 2011.

[3] Kim D., Nam J., Song J., and Kim S. Automatic patch generation
learned from human-written patches. InICSE 2013, pages 802–811,
2013.

[4] Nafi Diallo, Wided Ghardallou, Marcelo Frias, Ali Jaoua,and Ali Mili.
What is a fault? and why does it matter? Technical report, NJIT, Newark,
NJ, http://web.njit.edu/˜mili/jrn.pdf, 2015.

[5] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris
Hawblitzel. Differential assertion checking. InProceedings, ESEC/
SIGSOFT FSE, pages 345–455, 2013.

[6] Claire LeGoues, Stephanie Forrest, and Westley Weimer.Current
challenges in automatic software repair.Software Quality Journal,
21(3):421–443, 2013.

[7] Francesco Logozzo and Thomas Ball. Modular and verified automatic
program repair. InProceedings, OOPSLA, pages 133–146, 2012.

[8] Francesco Logozzo, Shuvendu Lahiri, Manual Faehndrich, and San
Blackshear. Verification modulo versions: Towards usable verification.
In Proceedings, PLDI, 2014.

[9] Ali Mili, Marcelo Frias, and Ali Jaoua. On faults and faulty programs.
In Peter Hoefner, Peter Jipsen, Wolfram Kahl, and Martin Eric Mueller,
editors, Proceedings, RAMICS: 14th International Conference on Re-
lational and Algebraic Methods in Computer Science, Lecture Notes
in Computer Science, Marienstatt, Germany, April 28-May 1st 2014.
Springer.

[10] Martin Monperrus. A critical review of path generationlearned from
human written patches: Essay on the problem statement and evaluation
of automatic software repair. InProceedings, ICSE 2014, Hyderabad,
India, 2014.

[11] Hoang Duong Thien Nguyen, DaWei Qi, Abhik Roychoudhury, and
Satish Chandra. Semfix: Program repair via semantic analysis. In
Proceedings, ICSE, pages 772–781, 2013.

[12] Debroy V. and Wong W.E. Using mutation to automaticallysuggest fixes
to faulty programs. InProceedings, ICST 2010, pages 65–74, 2010.

[13] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz,
Bertrand Meyer, and Andreas Zeller. Automated fixing of programs
with contracts. InISSTA 2010: Proceedings of the 19th international
symposium on Software testing and analysis, pages 61–72, New York,
NY, July 2010. ACM.

