
A Semantic Recognizer Infrastructure for Computing Loop
Behavior

Ali Mili
��� �

Tim Daly
�
, Mark Pleszkoch

�
, and Stacy Prowell

�
�
: College of Computer Science

�
: Software Engineering Institute

New Jersey Institute of Technology Carnegie Mellon University
Newark NJ 07102-1982 Pittsburgh PA 15213-3890

mili@cis.njit.edu,
�
daly,mpleszko,sprowell � @cert.org

September 5, 2006

Abstract

Next-generation software engineering is envisioned as a
computational discipline that complements human capa-
bility through automated computation of software behav-
ior and properties to the maximum extent possible. To
help realize this vision, we are exploring the technology of
function extraction. Behavior computation for sequences
and alternations is relatively straightforward, but no gen-
eral theory for loop computation can exist, and engineer-
ing solutions must be sought. This paper defines an in-
frastructure for loop computation based on hierarchies of
semantic recognizers operating within a refinement cal-
culus, and outlines an extraction algorithm for computing
loop behavior based on application of the recognizers.

1 Introduction: Computing Pro-
gram Behavior

1.1 Position of the Problem

It is increasingly evident that software engineering is
reaching cost and complexity limits of development tech-
nologies evolved in the first fifty years of computing. We
envision next-generation software engineering (NGSE) as
a computational discipline, capable of rigorous automated
analysis of its subject matter, just as, for example, present-
day electrical engineering benefits from computational
methods in developing and analyzing its engineering ar-
tifacts [11].

A principal objective of NGSE is dramatic reduction
in the cost and complexity associated with software en-
gineering. We believe that a key capability for achieving

this objective is automated computation of the behavior of
programs and other software engineering representations
to the maximum extent possible. This capability will fill
a gap in the ability of software engineers to quickly and
reliably understand the functionality of programs written
by themselves and others, both during and after develop-
ment. Also, this capability would have substantial impact
on many engineering activities, from design and verifica-
tion, to implementation and testing, to maintenance and
evolution. Behavior computation is an extremely difficult
problem, but the substantial value of a solution motivates
a closer look.

The function-theoretic view of software illuminates a
strategy for computing program behavior [14, 17, 15].
Function-theoretic methods treat programs as rules for
mathematical functions or relations, that is, mappings
from domains to ranges, regardless of their subject mat-
ter or programming language. A function theorem de-
fines behaviorally equivalent but non-procedural func-
tional representations for sequence, alternation, and it-
eration control structures (and their variants), which are
themselves sufficient to represent any sequential logic.
These functional forms are the starting point for behavior
computation. In structured form, programs present a hi-
erarchy in their constituent control structures that can be
traversed bottom up to compute intermediate and even-
tually overall behavior in a stepwise manner. The theo-
rem shows that the behavior of sequence structures can be
computed by means of ordinary function composition to
arrive at net effects that are easily expressed as concurrent
assignments of initial values to final values. The behavior
of alternation structures is captured in a case analysis of
true and false branches that is easily expressed as condi-
tional concurrent assignments.

The behavior of iteration structures is defined by the
function theorem as a recursive equation that, while cor-
rect, does little to abstract loop behavior in terms mean-
ingful to programmers. In addition, mathematical re-
sults show that no comprehensive theory for loop behav-
ior computation can exist, so engineering solutions must
be sought. This does not mean that rigorous formulations
for loop computation cannot be developed. In particular,
this paper provides the infrastructure for such a formula-
tion in terms of semantic recognizers operating within a
refinement algebra.

CERT STAR*Lab at the Software Engineering Institute
is developing the emerging technology of function extrac-
tion (FX) for automated computation of program behav-
ior to the maximum extent possible. An FX prototype
was used in a rigorous experiment to compare traditional
manual and automated analysis of program behavior. Re-
sults showed automated function extraction to be a signif-
icant improvement over manual methods [3]. The Func-
tion Extraction for Malicious Code (FX/MC) system is
being developed with the aim of providing fast and reli-
able analysis of malicious code expressed in Intel assem-
bly language [16]. This system computes the behavior of
sequences and alternations, and will compute the behavior
of iterations as algorithms are developed for this purpose.
Function extraction has substantial implications across the
software engineering life cycle, as discussed in [7].

1.2 Related Work

Computing the behavior of loops is akin to deriving loop
invariants, in that they are both aimed at shedding light on
the inductive argument that underlies the loop behavior.
While the extraction of loop functions has not attracted
much attention in the past, the analysis and derivation
of loop invariant has gained renewed attention recently.
In [4], Colon et al. consider loop invariants of numeric
programs as linear expressions and derive the coefficients
of the linear expressions by solving a set of linear equa-
tions; they extend this work to non linear expressions in
[18]. In [9, 10] Kovacs and Jebelean derive loop invari-
ants by solving recurrence relations; they pose the loop
invariants as solutions to recurrence relations, and derive
closed forms of the solution using a theorem prover (The-
orema) to support the process. In [2] Rodriguez Carbon-
nell et al. derive loop invariant by forward propagation
and fixed point computation, with robust theorem proving
support; they represent loop bodies as conditional concur-
rent assignments, whence their insights are of interest to
us as we envision to integrate conditionals into our con-
current assignments. Less recent work on loop invariants

includes work by Cheatham and Townley [20], Karr [8],
Cousot and Halwachs [5], and Mili et al [12]. Work on
loop analysis and loop transformations in the context of
compiler construction is also related to functional extrac-
tion, although to a lesser degree than work on loop invari-
ants [6, 1].

1.3 Research Plan

In section 2 we introduce the main premises of our ap-
proach by articulating our separation of concerns disci-
pline and highlighting the role of semantic recognizers
therein. In section 3 we present some sample recogniz-
ers and discuss the properties of the recognizer infrastruc-
ture, and its impact on the performance of the function
extraction machinery. In section 4 we present the main
algorithms and data structures of the loop extraction pro-
cess, using the Z notation. We illustrate the operation of
this algorithm in section 5 using a simple illustrative ex-
ample, then we conclude in section 6 by summarizing our
findings and sketching future directions of research.

2 Research Background

In Mili et. al. [13] we propose a divide-and-conquer
framework that allows us to derive the function of a loop
in a stepwise manner. This framework proceeds by suc-
cessive approximations of the loop function, in the form
of refinement statements such as:

� �������	��

where
�

is the while loop,
� ���

is the function of the loop,
and

�	�
is a relation that expresses some functional proper-

ties between initial states and final states; this refinement
statement basically says that the loop has all the functional
properties expressed in relation

� �
. We then say that

� �
is

a lower bound for
� ���

. In Mili et. al. [13] we have shown
that from a refinement statements above we can infer an
aggregate statement such as

� ������������	�����	�������������

WE have also shown that if the right hand side produces a
total deterministic relation, then we can infer

� �������

from
� ���	��

, where
���� � ��� � ��� � ������� � �

This simple
mathematical result forms the basis of our approach to the
automated derivation of loop functions, provided we learn
how to derive individual refinement statements.

We have found three broad sources for deriving lower
bounds

� �
for the loop function:

2

� Using Invariant Functions. The invariant function of
a while loop of the form while t do B is a total
function

�
such that:�������
	 � ����� � � � � � � ������ �

We have found for any invariant function
�

of
�

, we
can find a lower bound

�
of
� ���

in the form

�� ���������� ������ �
� Using Non Surjective Loop Bodies. We have found a

lower bound of the loop function in the form

�� ��� � � � ��� � � ��� ������ �
If
� � �

is surjective, then this lower bound becomes� ��� ������
, which is hardly informative. But if

� � �
is

non-surjective, we obtain a non-trivial lower bound
of
� ���

.� Using Boundary Conditions. If the combination of
the lower bounds obtained from the previous anal-
yses fails to produce a function, we have recourse
to the observation that the final state of the loop not
only satisfies

���
, it is also the first state that does so

in the iteration process (i.e. its predecessor by
� � �

satisfies
�
). This observation leads to the following

lower bound:

��� � ���� � � ��� ���� � � � � ��� ������ � � ������ �
We refer to this as the Boundary Condition Relation;
in the Z specification (below) we refer to it as BCRe-
lation (BC: boundary condition).

One way to define a function from � to � is to proceed in
two steps:� Define the level sets of

�
. A level set of a function is

the set of elements in the function’s domain that have
the same image.� Determine which image gets assigned to each level
set.

Interestingly, it seems the invariant functions method
(above) aims to partition the domain of

� ���
into the level

sets of
� � �

, and the other two methods cited thereafter ap-
pear to be geared towards assigning a unique image to
each level set. This seems to suggest some degree of com-
pleteness to the proposed approach. Be that as it may, the
results we have found so far [13] all fall into one of these
three categories.

3 A Structure for Semantic Recog-
nizers

We view the semantic recognizers not as an unstructured
monolith of patterns, but rather as a hierarchical struc-
ture ordered by generality. Also we envision that the al-
gorithm that attempts to recognize patterns in the source
code to derive lower bounds of the loop function attempts
first to match lower level patterns, and climbs up the tree
only if lower level patterns do not produce a match with
the source code. Figure 1 illustrates this structure, and
highlights the tension between generality/ usefulness and
genericity/ usability that arises in defining these patterns.
To illustrate the contrast between generality (usefulness:
likelihood of use) and genericity (usability: ease of use),
we consider the following example: We know from [13]
that if the loop body contains two statements such as

SR: i:= i-1, x:= x+i

then the loop refines the following relation (where
�

is the
loop condition)

���� ���
 � �!�#" $&%(' � ' %�) �* � $+�,%-' � � ' � %�)��* . ������� �/�10 �
Because these two statements are too specific, we may
want to generalize them into the following form:

SR’: i:=i-c, x:=x 2 i.

Now the step by which we decrement ' is arbitrary, and
the operation by which we compose

$
and ' is also arbi-

trary; whence we have obtained a more general pattern,
that is more widely applicable. But this additional gener-
ality comes at a cost in terms of usability, since now the
lower bound of the loop function has the following form
(provided 2 is associative):

� � �3� ���
 � � �#" $ 2
�4 5
6 �87 � $ � 2

�:94 5
6 �87 0 �

SR’ is more general than SR, hence more widely appli-
cable. But this generality comes at a cost: The abstract
operators in this relation must be instantiated with con-
crete operators at each application; also the rewrite rules
that are specific to the concrete operators must be brought
to bear in any subsequent manipulation and/ or simplifi-
cation of the relation. By contrast, relation

�
is readily

usable as it is. This is why our policy is to always match
any statement or set of statements with the lowest possible
node in the tree of semantic recognizers.

3

Root
Most General Pattern

Intermediate
Pattern

Intermediate
Pattern

Specific
Pattern

Specific
Pattern

Specific
Pattern

Specific
Pattern

�

�

�

�

�

More General:
More Useful,
Less Usable

�

�

�

�

�
More Specific:

Less Useful,
More Usable

�
�

�
�

�
�
�
�

�
�

��
�
�
� �

�
�

��
�
�
� �

Figure 1: Pattern Tree

State Semantic Refined
Space Pattern Specification
i: int i:=i-1,

���
x: sometype x:=f(x)

� ���
 � � �#" � � � $8� � � � 9 ��$ � � .
a: sometype a:=a+x � %�� � 5 6 � �

5
��$+� � � � %�� �:9

5
6 � �

5
��$ � � . ������� � �10

Figure 2: Cross Product Recognizer

In this section, we present some semantic recognizers,
to build on the structure started in [13] by adapting pat-
terns presented in [21]. Semantic Recognizers are defined
by their state space, the pattern of statements they recog-
nize, and the specification that we know the loop to refine
whenever the given pattern appears. We alter, recast, and
reinterpret the cross product rule presented in [21] into the
pattern shown in Figure 2. This pattern can be generalized
in many ways (generalizing the ’+’, the increment of ' , the
direction of the increment, etc) but we keep it simple here.
The basic idea of this pattern is to combine the computa-
tion of a variable (

$
) with the use of that variable (in the

assignment of �); this is clearly a recurring situation in
programs. We briefly illustrate this pattern using an ex-
ample discussed in [21], slightly modified.

w =
while (i<>0) do

[i:= i-1,
x:= x-1,
y:= y+x]

We find the following lower bound for
� ���

:

�

=
�

According to the Table
0� ���
 � � �#" � � ��$+� � � � 9 � $ � �

.	� %�� � 5 6 � �
5
��$+� � � � %
� � 9

5
6 � �

5
� $ � � . ' � ��� 0

=
�

since
�� ��$ � � � $ � 0� ���
 � � �#" $ � � � � � $+� .

� %�� � 5 6 � �
5
��$+� � � � %
� � 9

5
6 � �

5
� $ � � . ' � ��� 0

=
�

since
�
5
� $8� � $�� 7 0� ���
 � � �#" $ � � $�� ' .

� %�� � 5 6 � �
5
��$+� � � � %
� � 9

5
6 � �

5
� $ � � . ' � ��� 0

=
�

since
��
5
6 ��� ���

, whatever
�

is
0� ���
 � � �#" $ � � $�� ' .

� � � � %�� � 5 6 � �
5
� $8� . ' � ��� 0

=
�

since
�
5
� $8� � $�� 7 0� ���
 � � �#" $ � � $�� ' .

� � � � %�� � 5 6 � $�� 7 . ' � ��� 0
=

�
case analysis

0� ���
 � � �#" $�� ' . $ � � $�� ' .
� � � � %�������� �! � � � � � � �! � . ' � ��� 0��� ���
 � � �#" $#" ' . $ � � $�� ' .
� � � � %�������� �! � ��� �%$ � � �%$ ��� �! � . ' � ��� 0 .

4

This function is clearly total, since the domains of the two
terms are complementary. It is also deterministic, since
the domains of the two terms are disjoint and each term is
deterministic. Whence we infer that

� ���
not only refines

this function; it actually equals it.
We introduce, in Figure 3, three more semantic recog-

nizers, which will be used in our subsequent discussion
of a loop extraction algorithm. One of these recognizers
matches a single statement, and two match pairs of state-
ments.

4 Outline of an Extraction Algo-
rithm

We attempt to specify the extraction algorithm using the
Z notation [19]. To this effect, we provide, in turn, data
types, then state variables, then initializations, and finally
some operations.

4.1 Data Types

On the basis of the foregoing analysis, we have deter-
mined that it is worthwhile to pursue a pattern recognition
approach, and we speculate that we can extract loop be-
haviors in a stepwise manner, using predefined semantic
recognizers. In the sequel, we present a Z specification of
the data structures that are needed, in our view, to support
the extraction of loop functions according to the frame-
work discussed in [13]. First, we introduce some basic Z
types for the purpose of this discussion, which include:

NAMETYPE (for variable names),
TYPETYPE (for variable and expression types),

EXPRESSIONTYPE (for expressions),
RELATIONTYPE (for relations).

The type RELATIONTYPE can be represented as a logi-
cal expression whence it is a sub-type of EXPRESSION-
TYPE, but we do not necessarily want to make that de-
termination now. Part of the matching process is a type
matching, hence we briefly introduce the concept of typed
variable declaration.

VARDECLARATION

Name: NAMETYPE
Type: TYPETYPE

Using the type VARDECLARATION, we introduce the
type PROGRAMSPACE, as follows:

PROGRAMSPACE

Vars: P(VARDECLARATION)
// No two vars have the same name

We need a variable of type PROGRAMSPACE to keep
track of the program variables that are of interest for the
function extraction. Because loop bodies are represented
as conditional concurrent assignments (CCA) prior to the
extraction step, we introduce the type CCATYPE, as fol-
lows:

CCATYPE

Var: NAMETYPE;
Expr: EXPRESSIONLESS;
type(Var) = type(Ex pr)

The condition of equality between the type of the variable
(left hand side) and the type of the expression (right hand
side) can be replaced by an equality, to account for the
fact that it is sufficient for the expression type to be con-
vertible into the variables type. Conditional Concurrent
Assignments are actually more complex than that (since
they include conditions), but we keep this for now, as the
semantic recognizers we have so far do not handle condi-
tions yet. Using CCATYPE, we derive a characterization
of the loop as follows:

LAPTOPS

Space: PROGRAM SPACE
Coned: EXPRESSIONISM
Body: P(CATY)
// No Undeclared Variables

Semantic Recognizers recognize Cass or combinations
of CCA’s and infer from them lower bounds of the loop
function in the form of a relation. We classify Semantic
Recognizers by the number of CCA’s they recognize at
once. For the sake of this initial prototype, we can con-
sider recognizers that match up to three CCA’s.

SR1TYPE

Cca: CCATYPE
Relation: RELATIONTYPE

This type of recognizer produces a lower bound of the
loop function using a single CCA. We briefly introduce
similar structures for pairs and triplets of CCA’s.

SR2TYPE

Cca1: CCATYPE
Cca2: CCATYPE
Relation: RELATIONTYPE

5

State Syntactic Refined
Space Pattern Specification
x: int; x:= x+c

���(� ���
 � � �#" $�������� � $ � ������� . ������� � �10
const c: int;�
	���
x, y: int x:=x+a,

� ���
 � � �#" $������ " � " � $ � ����� " � " .
canst a, b: int y:=y+b

�� ��� $ � �� � ���1$ � . ������� � �10
x, y: int x:=x+a

� ���
 � � � " $������ " � " � $ � ����� " � "
canst a, b: int y:= y+b*x .	� ���� � � � $�� ��� � � � � ����� � 9 ��� 9%$�� ��� �

. ������� � �10
Figure 3: Arithmetic Recognizers

SR3TYPE

Cca1: CCATYPE
Cca2: CCATYPE
Cca3: CCATYPE
Relation: RELATIONTYPE

Using individual recognizer types, we define the type
recognizer library; we produce one such library for each
number of CCA’s.

SR1LIBRARYTYPE = P(SR1TYPE)
SR2LIBRARYTYPE = P(SR2TYPE)
SR3LIBRARYTYPE = P(SR3TYPE)

Strictly speaking, these should not be flat sets but rather
tree structures, where the most general patterns fit higher
in the tree. The tree structure allows us to zoom in faster
on the most specific recognizer that matches a given state-
ment or combination of statements. However, for an ini-
tial prototype, the libraries are small (include a small set
of recognizers), hence the search algorithm makes little
difference as far as performance is concerned.

4.2 State Space

The variables that we need to represent the state of the
extraction process include: a representation of the loop, a
representation of the recognizer libraries, and a represen-
tation of the relation that is progressively taking shape as
the loop function. We write:

LoopFunctionExtractor

Loop: LOOPTYPE
SR1Library: SR1LIBRARYTYPE
SR2Library: SR2LIBRARYTYPE
SR3Library: SR3LIBRARYTYPE
LoopFunction: RELATIONTYPE

4.3 Initialization

ExtractorInit
�

LoopFunctionExtractor
ObjectLoop?: LOOPTYPE
SR1Lib?: SR1LIBRARYTYPE
SR2Lib?: SR2LIBRARYTYPE
SR3Lib?: SR3LIBRARYTYPE
Loop’ = ObjectLoop?
SR1Library’ = SR1Lib? // 1-recognizers
SR2Library’ = SR2Lib? // 2-recognizers
SR3Library’ = SR3Lib? // 3-recognizers
LoopFunction’ = MinimalTotalRelation

The loop takes on the object of the extraction; the li-
braries are initialized to the known recognizers of the
given length. As for the relation that is used to approxi-
mate the loop function, we initialize it to the least defined
total relation. By virtue of our refinement ordering, the
minimal total relation is the universal relation, represented
by predicate ������� .

4.4 Operations

As we have discussed in section 2, we have identified
three sources of information that can be used to de-
rive lower bounds (in the refinement ordering) of the
loop function: Using termination conditions; using non-
surjective loop bodies; and using invariant functions. In-
variant functions provide typically most of the functional
details, and pose the greatest challenge to deploy. We
discuss three steps in the derivation of lower bounds by
means of invariant functions.� Functions match1, match2 and match3 match

combinations of statements from the loop body
against existing patterns of length 1, 2 or 3, with-

6

out worrying about permutations (this will be done
by the calling procedure).� Function match will coordinate calls to match1,
match2 and match3 to combine their collective
capability.� After function match completes, the variable Re-
lation contains the loop function, or failing that
(if the relation is non-deterministic), a relation that is
known to be refined by the loop. We can then sim-
plify the relation and/or, if it is deterministic, turn it
into a CCA. .

We depart here from strict Z notation, because we really
want to articulate algorithms rather than simply dictate
outcomes. We use a straightforward C-like algorithmic
notation.

5 Illustrative Example

To illustrate the extraction algorithm, we consider the fol-
lowing loop, where variables

$
, � and � are of type inte-

ger:

while x>5 do
{x:= x-3,
y:= y+5,
z:= z+4*x

}

In terms of the Z specification presented above, this loop
is defined by its three components:

Space x, y, z: int
Cond x>5
Body x:=x-3, y:=y+5, z:=z+4*x

For simplicity, we consider that SR1Library contains
one Semantic Recognizer, represented in Figure 5: Also,
we consider that SR2Library contains two Semantic
Recognizers, represented in Figure 6: We now follow the
extraction routine as it proceeds through the excution of
the extract function; the result of executing this func-
tion is recorded in Relation. First, we observe that the
loop body defines a surjective function (this can be au-
tomated using theorem proving technology, though there
are ample shortcuts). Whence we initialize variable Re-
lation (represented by its characteristic predicate) to
����� � . We find

����� � � '���� �(� ���
 � �!�#" ����� � 0 �
Because the condition of the loop is an inequality (

$
	��
),

we perform the combination

Relation := Relation
�

BCRelation,

where�� ����� � � '���� � � � �� � � ��� � �� � � � � ��� ������ � � ������

where

�
is the loop condition, which merely says that the

final state of the loop satisfies
$����

and that the state
immediately before it (in the iteration process) satisfies$
	��

. Because
�

decrements
$

by 3, we find�� ����� � � '���� �(� ���
 � � �#" $�	�� . $ ����� . $ �,%���	�� 0
� � ��$���� �10 �

This can be simplified into�� ����� � � '���� ��� ���
 � �!�#" $�	�� . * " $+������0 � � � $
��� � 0 �
Taking the join (in this case, the intersection since the two
relations are total) with Relation and placing the result
in Relation yields:

����� � � '���� ��� ���
 � �!�#" $�	�� . * " $ ����� 0 � � � $���� � 0 �
This value of Relation gets passed to function IF-
match, along with the loop. This function calls match1,
which matches the first line of loop body against the (sole)
semantic recognizer of SR1Library, yielding after in-
stanciation:

� � ��� ���
 � � �#" $ ������� � $ � ������� . $ � ����0 �
Taking the join (intersection) with the current value of
Relation, we find

����� � � '���� �(� ���
 � � � " $�	�� . $ ������� � $+� ������� . $ ������0� � ��$���� � �
Function match1 also matches the second line of
the loop body against the sole semantic recognizer of
SR1Library, yielding, after taking the join:

����� � � '���� ��� ���
 � � �#" $�	�� . $�������� � $ � �������
.	� ������� � � � ������� . $ � ��� 0 � � � $���� � �

Because these are the only two matches, this completes
the for loop that calls match1. We now consider the for
loop that calls match2. This loop finds two matches: A
match between the first and second line of the loop body
and the first semantic recognizer of SR2Library, which
produces (after instantiation and simplification) the fol-
lowing relation:

�	� �(� ���
 � �!�#" � � %�� $ � � � �,%�� $ � . $+����� 0 �
7

function match1 (in statement: CCATYPE; in recognizer: SR1TYPE;
in LoopCond: EXPRESSIONTYPE;

in, out Relation: RELATIONTYPE);
function match2 (in st1, st2: CCATYPE; in recognizer: SR2TYPE;
in LoopCond: EXPRESSIONTYPE;

in, out Relation: RELATIONTYPE);
// attempt to match st1, st2 in this order

function match3 (in st1, st2, st3: CCATYPE; in recognizer: SR3TYPE;
in LoopCond: EXPRESSIONTYPE;
in, out Relation: RELATIONTYPE);
// attempt to match st1, st2, st3 in this order

function IFmatch (in Loop: LOOPTYPE;
in, out: Relation: RELATIONTYPE)

// uses invariant functions to derive lower bounds
// for the loop function
{for all (st: CCATYPE in Loop.Body)

{for all (Sr1: SR1TYPE in SR1Library)
{match1(st,Sr1,Loop.Cond,Relation);
// if there is a match, corresponding instantiated
// relation is added to Relation

} }
for all (st1, st2: CCATYPE in Loop.Body)

{for all (Sr2: SR2TYPE in SR2Library)
{match2(st1,st2,Sr2,Loop.Cond,Relation);
match2(st2,st1,Sr2,Loop.Cond,Relation);

} }
for all (st1, st2, st3: CCATYPE in Loop.Body)

{for all (Sr3: SR3TYPE in SR3Library)
{match3(st1,st2,st3,Sr3,Loop.Cond,Relation);
match3(st2,st1,st3,Sr3,Loop.Cond,Relation);
match3(st1,st3,st2,Sr3,Loop.Cond,Relation);
match3(st2,st3,st1,Sr3,Loop.Cond,Relation);
match3(st3,st1,st2,Sr3,Loop.Cond,Relation);
match3(st3,st2,st1,Sr3,Loop.Cond,Relation);
// all six permutations
} } }

function extract (in Loop: LOOPTYPE;
out Relation: RELATIONTYPE)
// uses IFmatch and other means to derive
// the loop function by successive approximations.
{if surjective(Loop.Body)

{Relation := MinimalTotalRelation;}
else

{Relation := NSRelation;}
if inequality(Loop.Cond)

{Relation := Relation join BCRelation;}
IFmatch(Loop, Relation);
simplify(Relation); // perhaps turn it into CCA

}

Figure 4: Outline of an Extraction Algorithm

8

Cca Relation
x:=x+a

� ���
 � � �#" $������ " � " � $ � ����� " � " . �
����� � 0

Figure 5: A 1-Semantic Recognizer

Cca1 Cca2 Relation
x:=x+a y:=y+b

� ���
 � � � " � $���� � � � $ � ��� � � . �
����� � 0

x:=x+a y:=y+bx
� ���
 � � � " � ����� ����� $�� ��� � � � � ���� � 9 � � 9 $�� ��� � . �

����� � 0
Figure 6: Two 2-Recognizers

We also find a match between the first and third line
of the loop body and the second semantic recognizer of
SR2Library, which produces (after instantiation) the
following relation:

� � �3� ���
 � � �#"
�
% * � $ � $ %�� �

�
�
�
� % * � $ � ��$ � % �,�

� . $ � ��� 0 �
Taking the join of

� �
and

� �
with the current value of

Relation yields

����� � � '���� �(� ���
 � �!�#" $�	�� . $ ������� � $+� ������� .
� ����� � � � � ������� . � � %�� $ � � � � %�� $ � .
�
% * � $ ��$ %�� �

�
�
�
� % * � $ � � $ � %�� �

� .* " $+������0 � � ��$���� � �
These are the only two matches that will succeed with
SR2Library, hence this terminates the second for loop
in IFmatch. The third for loop does not run since
we do not have any 3-line patterns. Hence IFmatch
returns Relation as written above. Function sim-
plify(Relation) transforms it into:

����� � � '���� �(� ���
 � � � " $�	�� . $ � � � % $�������� .
� � � � %�� � $ ������� �)�� .

�
� �
�
% * $ �) * �),% $ ������� �#% * ��$���� ����$�% $��������,�10 �

6 Conclusion

Computing the function of a while loop in closed form is
a non trivial problem, not only because of the difficulty
of building the necessary inductive argument, but also be-
cause of the need to cast the result in terms the user can
relate to. Much of the functional attributes of the loop
are derived through the use of invariant functions, which
are obtained by matching loop body statements against

precatalogued patterns that we call semantic recognizers.
The most critical success factor in this effort is the con-
struction and use of the semantic recognizer infrastruc-
ture; we envision that this infrastructure will evolve in
the future to cover more and more loops, and more and
more functional aspects of loops. In this paper we have
presented the broad outlines of an algorithm that derives
loop functions by successive approximations, by accumu-
lating independent items of information about the loop
function, and composing them into an aggregate relation.
If the resulting relation is total and deterministic, then it
is the function of the loop. If not, then this relation repre-
sents the most information we can collect about the loop
at hand, on the basis of the available recognizer structure.

Perspectives of further research include, in addition to
evolving the recognizer infrastructure: means to integrate
ADT axiomatizations into the (algorithms-oriented) se-
mantic recognizers, thereby enabling us to handle pro-
grams that manipulate advanced data types; means to inte-
grate domain knowledge into the loop extraction machin-
ery, to enable us to present the results in a form that is
meaningful to the user; means to support post-extraction
user interactions, to enable us to answer queries about the
loop function.

References

[1] Utpal Banerjee. Loop Transformations for Restruc-
turing Compilers. Kluwer Academic Publishers,
Boston, MA, 1993.

[2] E. Rodriguez Carbonnell and Deepak Kapur. Pro-
gram verification using automatic generation of in-
variants. In Proceedings, International Conference
on Theoretical Aspects of Computing ’2004, volume
3407, pages 325–340. Lecture Notes in Computer
Science, Springer Verlag, 2004.

9

[3] Rosann W Collins, Gwendolyn H. Walton, Alan R
Hevner, and Richard C Linger. The cert function
extraction experiment: Quantifying fx impact on
software comprehension and verification. Techni-
cal Report CMU/SEI-2005-TN-047, Software Engi-
neering Institute, Carnegie Mellon University, De-
cember 2005.

[4] M. A. Colon, S. Sankaranarayana, and H. B.
Sipna. Linear invariant generation using non lin-
ear constraint solving. In Proceedings, Computer
Aided Verification, CAV 2003, volume 2725 of Lec-
ture Notes in Computer Science, pages 420–432.
Springer Verlag, 2003.

[5] P. Cousot and N. Halbwachs. Automatic discov-
ery of linear restraints among variables of a pro-
gram. In Conference Record of the Fifth Annual
ACM SIGPLAN-SIGACT Symposium on the Prin-
ciples of Programming Languages, pages 84–97,
1978.

[6] Thomas Fahringer and Bernhard Scholz. Advanced
Symbolic Analysis for Compilers. Springer Verlag,
Berlin, Garmany, 2003.

[7] Alan R Hevner, Richard C Linger, Rosann W
Collins, Mark G Pleszkoch, Stacy J. Prowell, and
Gwendolyn H Walton. The impact of function ex-
traction technology on next generation software en-
gineering. Technical Report CMU/SEI-2005-TR-
015, Software Engineering Institute, July 2005.

[8] M. Karr. Affine relationships among variables of a
program. Acta Informatica, 6:133–151, 1976.

[9] L. Kovacs and T. Jebelean. Automated generation of
loop invariants by recurrence solving in theorema.
In D. Petcu, V. Negru, D. Zaharie, and T. Jebelean,
editors, Proceedings of the 6th International Sym-
posium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC04), pages 451–464,
Timisoara, Romania, 2004. Mirton Publisher.

[10] T. Jebelean L. Kovacs. An algorithm for auto-
mated generation of invariants for loops with con-
ditionals. In D. Petcu et. al., editor, Proceed-
ings of the Computer-Aided Verification on Infor-
mation Systems Workshop (CAVIS05), 7th Interna-
tional Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC05), pages
16–19, Department of Computer Science, West Uni-
versity of Timisoara, Romania, 2005.

[11] Richard C. Linger, Gwendolyn Walton, Alan
Hevner, and Luanne Burns. Next-generation soft-
ware engineering: Function extraction for computa-
tion of software behavior. Technical report, 2006.
Submitted for publication.

[12] Ali Mili, Jules Desharnais, and Jean Raymon Gagne.
Strongest invariant functions: Their use in the sys-
tematic analysis of while statements. Acta Informat-
ica, April 1985.

[13] Ali Mili, Mark Pleszkoch, and Richard C. Linger.
Toward the automated derivation of loop functions.
Technical report, NJIT, SEI, May 2006.

[14] H.D. Mills. The new math of computer program-
ming. Communications of the ACM, 18(1), January
1975.

[15] Mark Pleszkoch, Phillip Hausler, Alan Hevner, and
Richard C Linger. Function-theoretic principles of
program understanding. In Proceedings of the 23rd
Annual Hawaii International Conference on System
Science (HICSS35), Hawaii, 1990. IEEE Computer
Society Press, Los Alamitos, CA.

[16] Mark Pleszkoch and Richard C. Linger. Improv-
ing network system security with function extraction
technology for automated calculation of program be-
havior. In Proceedings, Hawaii International Con-
ference on System Sciences, Los Alamitos, CA, Jan-
uary 2004. IEEE Computer Society Press.

[17] S.J. Prowell, C.J. Trammell, R.C. Linger, and J.H.
Poore. Cleanroom Software Engineering: Technol-
ogy and Process. SEI Series in Software Engineer-
ing. Addison Wesley, 1999.

[18] S. Sankaranarayana, H. B. Sipna, and Z. Manna.
Non linear loop invariant generation using groebner
bases. In Proceedings, ACM SIGPLAN Principles of
Programming Languages, POPL 2004, pages 381–
329, 2004.

[19] J.M. Spivey. The Z Notation —A Reference Manual.
Prentice Hall, London, UK, 1998.

[20] J. A. Townley T. E. Cheatham. Symbolic evaluation
of programs: A look at loop analysis. In Proc. of
ACM Symposium on Symbolic and Algebraic Com-
putation, pages 90–96, 1976.

[21] FX Team. Documentation, loop week. Technical re-
port, Software Engineering Institute, Pittsburgh, PA,
May 2006.

10

