 Programming Language Trends:

An Empirical Study

Yaofei Chen

Rose Dios

Dept. of Computer Science

Dept. of Mathematics

New Jersey Institute of Technology

New Jersey Institute of Technology

Newark, NJ, 07102

Newark, NJ, 07102

yfchen@cis.njit.edu

rodios@m.njit.edu

Ali Mili, Lan Wu

Kefei Wang

Dept. of Computer Science

Dept. of Biometry & Statistics

New Jersey Institute of Technology

State University of NY Albany Campus

Newark, NJ, 07102

Rensselaer, NY, 12144

mili@cis.njit.edu; lw7@njit.edu

kw7538@csc.albany.edu
Abstract

Predicting software engineering trends is a difficult proposition, due to the wide range of factors that are involved, and the complexity of their interactions. In a recent publication, we had discussed a tentative structure for this complex problem and had given a set of possible methods to approach it. In this paper, we narrow down the scope of the problem and try to gain some depth, by focusing on a compact set of trends: programming languages. We select a set of languages, take measurements on their evolution over a number of years, then draw statistical conclusions on what drives the evolution of a language.

1. Background: software engineering trends
The ability to monitor/predict software engineering trends is a strategically important asset, but it is also a very difficult proposition. In [1], we had introduced this problem in general terms, and had sketched the outlines of a general solution. We had divided issues into four broad categories, which deal with:

· How can we watch software engineering trends (i.e. how do we identify/ quantify/ measure relevant factors)?

· How can we predict software engineering trends? How early can we predict success or failure?

· How can we adapt to software engineering trends? How can we assess the impact of a trend on a given sector of activity?

· How can we affect software engineering trends (or, in fact can we affect them at all)? If so, who can affect them (academics? researchers? governmental agencies? industrial organizations? professional bodies? standards organizations?)

In this paper, we trade width for depth, by focusing our attention on a small, compact, set of trends, and aiming to investigate it in some detail. Specifically, we consider a set of seventeen high level programming languages, quantify many of their relevant factors, then collect data on their evolution over a number of years. By applying statistical methods to this data, we aim to gain some insights into what makes one language successful and what does not. Some of the specific questions that we aim to address in the long run are:

· What determines the success of a programming language? The history of programming languages has many instances of excellent languages that fail and lesser languages that succeed ---hence technical merit is only part of the story.

· What factors should we look at for programming languages? What are the most important factors of a programming language?

· What are the historical trends for programming languages? How can we model their evolution?

· Can we predict the future trends of programming languages? If so, how can we predict the future of current programming languages?

· Does governmental support help a language? To what extent? The history of programming languages has a few (at least two) examples of languages that were supported by governments but (hence?) did not succeed.

2. Focus on programming languages

Though programming languages are not necessarily what one thinks of when one talks of software engineering trends, they have been chosen as the object of this first experiment, for a number of diverse reasons, including:

· They are important artifacts in the history of software engineering.

· They represent a unity of purpose and general characteristics, across several decades of evolution.

· They offer a wide diversity of features and a long historical context, thereby affording us precise analysis.

· Their history is relatively well documented, and their important characteristics relatively well understood.
Figure 1 (due to [2]) shows a summary of the genesis of the main high-level languages that are known nowadays. We have selected a set of 17 languages as our sample, chosen for their diversity and their technical or historical interest: ADA, ALGOL, APL, BASIC, C, C++, COBOL, EIFFEL, FORTRAN, JAVA, LISP, ML, MODULA, PASCAL, PROLOG, SCHEME, SMALLTALK.

[image: image1.png]- Fertran |
L

Cobal A0

M7
]

L ol

|

L= ok

L

1

Shane

i

Pt
L cuan

|

L Stk s0

|

L s G

|

L \ Camnon g s
| |
L e et cm
|

L 1 shenenms

|

Pyhen”™ Farng | skl
Ry
|
- ocan!
|
- a2z Coes0)
N

o

Figure 1. Brief history of high-level languages
 Notice that we only focus on the third generation general-purpose languages, and do not include other generations and scripting languages, such as assembly language, SQL, Perl, ASP, PHP, Javascript, etc.

 In order to model the evolution of these languages, we have resolved to represent each language by a set of factors, which we divide into two categories.

2.1. Intrinsic factors

Intrinsic factors are the factors that can be used to describe the general design criteria of programming languages. We have identified eleven such factors: [3][4]:
· Generality: A language achieves generality by avoiding special cases in the availability or use of constructs and by combining closely related constructs into a single more general one.
· Orthogonality: Orthogonality means that language constructs can be combined in any meaningful way and that the interaction of constructs, or the context of use, should not cause arbitrary restrictions or unexpected behaviors.
· Reliability: This factor reflects to what extent a language aids the design and development of reliable programs.
· Maintainability: This factor reflects to what extent a language promotes ease of program maintenance. It reflects, among others, program readability.
· Efficiency: This factor reflects to what extent a language design aids the production of efficient programs. Constructs that have unexpectedly expensive implementations should be easily recognizable by translators and users.
· Simplicity: This factor reflects the simplicity of the design of a language, and measures such aspects as the minimality of required concepts, the integrity/ consistency of its structures, etc
· Machine Independence: This factor reflects to what extent the language semantics are defined independently of machine specific details. Good languages should not dictate the characteristics of object machines or operating systems.
· Implementability: This factor reflects to what extent A language is composed of features that are understood and can be implemented economically.
· Extensibility: This factor reflects to what extent a language has general mechanisms for the user to add features to a language.
· Expressiveness: This factor reflects the ability of a language to express complex computations or complex data structures in appealing, intuitive ways.
· Influence/Impact: This factor reflects to what extent this language has influenced the design and/or evolution of other languages and/or the discipline of language design in general.
These factors were chosen for their general significance, their (relative) completeness, and their (relative) orthogonality [5] . Yet we do not claim that our list is either complete or orthogonal; all we claim is that it is sufficiently rich to enable us to capture meaningful aspects of programming language evolution.

2.2. Extrinsic factors

Whereas intrinsic factors reflect properties of the language itself, extrinsic factors characterize the historical context in which the language has emerged and evolved; these factors evolve with time, and will be represented by chronological sequences of values, rather than single values. We have identified six extrinsic factors for the purposes of our study.

· Institutional support
· Industrial support
· Governmental support
· Organizational support
· Grassroots support
· Technology support
 For example, the factor grassroots support reflects the amount of support that the language is getting from practitioners, regardless of institutional/ organizational/ governmental pressures. Specific questions include:

· How many people consider this language as their primary language?
· How many people know this language?
· How many user groups are dedicated to (the use/ evolution/ dissemination of) this language?
We decompose and define the other extrinsic factor in a similar manner, using quantitative questions.

2.3. Quantifying factors

Most of the intrinsic factors we have introduced above are factors for which we have a good intuitive understanding, but no accepted quantitative formula. In order to quantify these factors, we have chosen, for each, a set of discrete features that are usually associated with this factor. Then we rank these features from 1 (lowest) to N (highest), where N is the number of features. The score of a language is then derived as the sum of all the scores that correspond to the features it has. For example, to quantify generality, we consider ten features, ranging from offering constant literals (score: 1) to offering generic ADT’s (score: 10). A detailed explanation of how all other intrinsic factors are computed is given in http://swlab.njit.edu/techwatch. We acknowledge that this method is controversial as it may sound arbitrary; but we find it adequate for our purposes, as it generally reflects our intuition about how candidate languages compare with respect to each intrinsic factor.

 Quantifying extrinsic factors is relatively easy because most of them are asking for numbers. We will just use the numbers as the value of each extrinsic factor. We will encounter difficulties deriving these numbers in practice, but that is a data collection issue (to be discussed in the next section), not a quantification issue.

3. Empirical investigation

Before we present our summary statistical model, we consider the following premises:

· We adopt intrinsic factors as independent variables of our model, as they influence the fate of a language but are themselves constant.

· Because many extrinsic factors feed unto themselves and may influence others, we adopt past values of extrinsic factors as independent variables.

· We adopt (present or future values of) extrinsic factors as dependent variables of our model.

· We do not represent the status of a language by the simple binary premise of successful/ unsuccessful, as this would be arbitrarily judgmental. Rather, we represent the status of a language by the vector of all its current extrinsic factors.

I1,…, Im:
Intrinsic factors

e1*,…,ek*:
Sequence of past extrinsic factors

E1,…, Ek:
Current extrinsic factors

Figure 2. Model for Programming Language Trends
Overall, the independent variables of our model include the intrinsic factors and the past history of extrinsic factors, and the dependent variables include the current (or future) values of the extrinsic factors; see Figure 2.

To evaluate intrinsic factors, we use the quantification procedures discussed in section 2.3. To this effect, we refer to the original language manual and determine whether each relevant feature is or is not offered by the language.

 To collect information about grassroots support, we have set up a web-based survey form (which is visible at http://swlab.njit.edu/techwatch/survey.asp) that software engineering professionals are invited to fill out online. The information we request from participants pertains to their knowledge/familiarity/practice of relevant languages for the current year (2003, when the survey was conducted) as well as for 1998 and 1993. We have publicized our survey very widely through professional channels (for example, google, yahoo, and other computer professional newsgroups) to maximize participation.

 Collecting information for the other extrinsic factors is significantly more difficult than both intrinsic factors and grassroots support. For the sake of illustration, we briefly discuss the factor of institutional support, which requires such information as: how many students know about some language, how many students use some language as their primary instructional language, etc. In order to derive this factor, we proceed as follows:

· Select a set of universities worldwide (in the US, Canada, Europe, Asia, Africa, the Middle East), where each university in the sample is used to represent a class of similar universities.

· Obtain syllabus information to infer language usage for 2003 as well as for 1998 and 1993.

· Obtain enrollment information through published resources or through direct contact.

· Prorate the results of each university in the sample with the number/ size of universities of the same class.

 The following sections will present and analyze the data we collected busing the above methods.

4. Data Analysis

Statistical data analysis methods are used to draw the initial conclusions. In this project, factor analysis [6] is used to investigate the latent factors in intrinsic and extrinsic factor groups. Canonical analysis is used as an advanced stage of factor analysis. We will not discuss how we analyze the data by using these statistics methods; instead, we will concentrate on the raw data, the models we constructed, and the relevant results that are derived from our analysis.

4.1. Raw Data

This section shows some raw sample data we collected. According to the data we collected, the 5 most popular languages (most people consider them as their primary programming languages) in 1993 are: C (22.47%), PASCAL (17.81%), BASIC (16.19%), FORTRAN (9.51%), C++ (6.88%). The 5 most popular languages in 1998 are: C (22.03%), C++ (18.31%), SMALLTALK (8.64%), FORTRAN (8.47%), PASCAL (7.79%). The 5 most popular languages in 2003 are: C++ (19.12%), JAVA (16.26%), SMALLTALK (13.32%), ADA (10.38%), FORTRAN (9.34%). Figure 3 shows the trends of most popular programming languages from 1993 to 2003. This figure presents a sample factor for grassroots support.

[image: image2.wmf]0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1993

1998

2003

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

Figure 3. Trends of “How many people consider this language as their primary programming language” from 1993 to 2003

[image: image3.wmf]0

500

1000

1500

2000

2500

3000

3500

1993

1998

2003

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

Figure 4. Evolution of “How many students use this language for any of their courses” from 1993 to 2003

[image: image4.wmf]0

50

100

150

200

250

300

1993

1998

2003

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

 Figure 5. Evolution of “How many companies use this language to develop their products” from 1993 to 2003

 Figures 4 and 5, each shows the sample raw data for one factor, which is included in institutional support and industrial support. The figures for other raw data and the complete data warehouse can be found on the project website.

4.2. Statistical Results

We use standard factor analysis and canonical correlation to assess the relationship between variables. Two kinds of analysis have been done: one with only the factors in the intrinsic group, and the other with both intrinsic and extrinsic factors. [6]

Table 1 Sample Correlation Results for Intrinsic Factors Only
	How many developers consider this language as primary language?

	Generality
	0.6913

	Orthoganality
	0.0199

	Reliability
	0.3199

	Maintainability
	0.0470

	Efficiency
	0.0703

	Simplicity
	-0.4703

	Implementability
	-0.3390

	Machine Independence
	0.8876

	Extensibility
	0.7625

	Expressiveness
	0.3024

	Influence/Impact
	0.0552

The first is done to seek the meaningful relationships between the intrinsic factors of a language and the value of its dependent variables. As an example, we consider the impact of intrinsic factors on the number of developers who consider the language as their primary development language. The results are summarized in Table 1. It shows that machine independence, extensibility and generality have more impact to this extrinsic factor than other intrinsic factors. By analyzing the tables for all factors, we find that the most important intrinsic factors are generality, reliability, machine independence, and extensibility.
The second model is applied to show the correlations between all factors, including intrinsic and extrinsic ones. Most of the time, the relationships in the first part now are not in the first rank. Some relationships are noteworthy, like those relations with variables from technology groups, some just show the highly related facts between some variables. Space limitations prohibit us from presenting all tables in detail, but the rotated factor pattern for extrinsic factors supports the following conclusions:

· Factors that fall under institutional support play an important role in many of the seven factors; this reflects perhaps that, with the five-year step of our study (1993, 1998, 2003), we have an opportunity to show how institutional decisions affect industrial trends through student training.

· Factors that fall under technology support play an important role in many of the seven factors; in fairness, that may be a consequence of the success of a language rather than its cause.

To show the evolutionary trend of a language, we construct the following multivariate regression models [7] by using the independent intrinsic and extrinsic factors. The multivariate regression equation has the form:

Y = A + B1X1 + B2X2 + ... + BkXk + E

 where:

Y = the predicted value on the dependent variable,

A = the Y intercept

X = the various independent variables,

B = the various coefficients for regression,

E = an error term.

SAS is used to analyze the raw data and construct the statistical models. The factor analysis and regression reports can be found in the website of this project.
5. Towards a Predictive Model

5.1. Derivation

In order to predict the future trends of programming languages, the original regression models can be revised. The derivative model will show the relationships among data of 1993, 1998, and 2003. Derivative regression models are constructed as follows:

E2003 = A * I + B * E1998 + C * E1993 + D

where:

E2003
= Value of extrinsic factors in 2003

I
= Value of intrinsic factors

A
= Parameter matrix for intrinsic factors

E1998
= Value of extrinsic factors in 1998

B
= Parameter matrix for extrinsic factors in 1998

E1993
= Value of extrinsic factors in 1993

C
= Parameter matrix for extrinsic factors in 1993

D
= Constant value

5.2. Validation

We construct this derivative model by using 12 languages and will use 5 languages to validate it. We consider the extrinsic factor of “What percentage of people know this programming language in 2003” and compare the actual value collected from our survey against the predicted value produced by our regression model. The results are shown in Table 2.

 F-Statistic, which is a standard statistical method to check if there are significant differences between 2 groups, is used to validate the prediction. In the F-table, for a=0.05, F must be greater than 4.49 to reject the hypothesis of statistical correlation. Because our F value is 0.235, which is much less, the hypothesis is validated.
Table 2 Difference between Actual & Predictive Value

	
	Actual Value
	Predictive Value

	ADA
	5.19%
	6.94%

	EIFFEL
	5.90%
	7.16%

	LISP
	7.68%
	7.74%

	PASCAL
	54.29%
	48.81%

	SMALLTALK
	10.06%
	8.48%

5.3. Application

Based on the assumption that the whole trends from 1998 to 2008 should be similar to those from 1993 to 2003, the following extended derivative model is used to predict the value of each extrinsic factor in 2008 by submitting the value in 98 to the 93 position and 03 to the 98 position in the model.

E2008 = A * I + B * E2003 + C * E1998 + D

[image: image5.wmf]0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1993

1998

2003

2008

ADA

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

Figure 6 Trends of most popular languages from 1993 to 2008.

By using the formula above, we can get the value for each extrinsic factor in 2008. Figure 6 shows the trends of most popular languages from 1993 to 2008. It seems that from 2003 to 2008, JAVA will be the only language that is still in increasing period. All the other ones will decline and begin to enter a stable period where the percentage won’t change too much. Because this model is based on past history, it is valid only as long as the past conditions prevail, it does not reflect the possible impact of the emergence of a popular new language. For example, C# will definitely have impact to the future trends of JAVA, so the predictive model should be revised/improved according to new technology changes.

6. Conclusion
Watching and predicting the evolution of software trends is a very high stakes proposition, but also a very difficult proposition [1, 8, 9, 10]. While this problem is very difficult in general, we believe that it can be tackled systematically in the case of small sets of trends that present the right level of unity and the right historical span. In this paper we have made a limited attempt to address this problem for perhaps the easiest possible sample: a set of programming languages. The outcome is a tentative predictive model for the evolution of these programming languages, and a model that can explain the interactions between the various factors that drive this evolution. Our statistical analysis has barely explored all the potential of our data, and what we presented in this paper is a subset of it. Our prospects of future research include further analyzing our data, as well as exploring other compact sets of trends, such as: operating systems, database systems, or web browsers. The combined synthesis of all these studies may give us insights into the evolution of new trends, which evade classification. [11]

Biographical Sketch

Yaofei Chen is a Senior Researcher at Principia Partners in Jersey City, NJ. His research interests are in software engineering and programming languages. He holds a PhD in Computer & Information Science from New Jersey Institute of Technology.

Ali Mili is Professor of Computer Science at the NJIT in Newark, NJ. His research interests are in software engineering. Prior to joining NJIT he was at West Virginia University, where he served as site director for SERC (Software Engineering Research Center) and Senior Scientist at the Institute for Software Research. Ali Mili holds a Doctorat es-Sciences d'Etat from the University of Grenoble, France, and a PhD from the University of Illinois at Urbana-Champaign.

Rose Ann Dios is on the faculty of the Department of Mathematics in NJIT. She holds a PhD in mathematics from the same institution. Her research interests include risk analysis, statistical decision theory, and reliability theory.
Lan Wu holds a MS in Computer Science from NJIT. She is pursuing a PhD degree at NJIT, under the supervision of Prof. Ali Mili.

Kefei Wang holds a MS in Statistics from State University of NY, Albany Campus.
Reference

[1] Robert David Cowan, Ali Mili, Hany Ammar, Alan McKendall Jr. “Software Engineering Technology Watch”. IEEE Software, Volume 19, Number 4, Jul./Aug. 2002, pp. 123-130.

[2] E. Levenez.
http://www.levenez.com/lang/ Computer Language History.

[3] Kenneth C. Louden. Programming Language Principles and Practice. PWS Publishing Company, Boston, MA. 1993.

[4] U.S. Department of Defense. June 1978. “Department of Defense Requirements for High Order Computer Programming Languages: “Steelman”.

[5] S Findy and B. Jacobs, How To Design A Programming Language, 2002.

[6] Principal Components and Factor Analysis, http://www.statsoftinc.com/textbook/stfacan.html.StatSoftInc 1984-2003.

[7] Edwards, A.L. Multiple Regression And The Analysis Of Variance And Covariance 2nd ed. 1979. W.H.freeman and Company.

[8] Geoffrey A. Moore. Crossing the Chasm. Harper Business, 1999.

[9] S.T Redwine and W.E. Riddle. Software Technology Maturation. Proceedings, 8th International Conference on Software Engineering, 1985. pages 189-200.

[10] P. Brereton et al. The Future of Software. Communications of the ACM. Vol 42, No 12 (December 1999), pages 78-84.

[11] Yaofei Chen. Programming Language Trends: An Empirical Study. Ph. D. Dissertation.

MODEL

F (I1, .., In,

E1,…, Ek)

I1

Im

ek*

Ek

E1

E2

e1*

PAGE
7

_1162734981.xls
Chart2

		1993		1993		1993		1993		1993		1993		1993		1993

		1998		1998		1998		1998		1998		1998		1998		1998

		2003		2003		2003		2003		2003		2003		2003		2003

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

0.0546558704

0.1619433198

0.2246963563

0.0688259109

0.0951417004

0

0.1781376518

0.0425101215

0.0677966102

0.0661016949

0.2203389831

0.1830508475

0.0847457627

0.0576271186

0.0796610169

0.086440678

0.1038062284

0.0190311419

0.0363321799

0.1911764706

0.0934256055

0.1626297578

0.0121107266

0.1332179931

Sheet1

				1993		1998		2003								1993		1998		2003						1993		1998		2003						1993		1998		2003

				134		194		322						ADA		13.56%		16.44%		27.85%				ADA		54		80		120				ADA		5.47%		6.78%		10.38%

				106		116		146						ALGOL		10.73%		9.83%		12.63%				ALGOL		4		4		4				ALGOL		0.40%		0.34%		0.35%

				112		112		132						APL		11.34%		9.49%		11.42%				APL		54		48		48				APL		5.47%		4.07%		4.15%

				666		730		874						BASIC		67.41%		61.86%		75.61%				BASIC		160		78		22				BASIC		16.19%		6.61%		1.90%

				598		996		1068						C		60.53%		84.41%		92.39%				C		222		260		42				C		22.47%		22.03%		3.63%

				234		730		921						C++		23.68%		61.86%		79.67%				C++		68		216		221				C++		6.88%		18.31%		19.12%

				186		206		260						COBOL		18.83%		17.46%		22.49%				COBOL		42		36		33				COBOL		4.25%		3.05%		2.85%

				28		80		186						EIFFEL		2.83%		6.78%		16.09%				EIFFEL		2		16		52				EIFFEL		0.20%		1.36%		4.50%

				396		436		562						FORTRAN		40.08%		36.95%		48.62%				FORTRAN		94		100		108				FORTRAN		9.51%		8.47%		9.34%

				0		290		824						JAVA		0.00%		24.58%		71.28%				JAVA		0		68		188				JAVA		0.00%		5.76%		16.26%

				182		254		460						LISP		18.42%		21.53%		39.79%				LISP		18		12		34				LISP		1.82%		1.02%		2.94%

				24		76		252						ML		2.43%		6.44%		21.80%				ML		10		24		52				ML		1.01%		2.03%		4.50%

				116		148		184						MODULA		11.74%		12.54%		15.92%				MODULA		14		10		4				MODULA		1.42%		0.85%		0.35%

				548		700		832						PASCAL		55.47%		59.32%		71.97%				PASCAL		176		94		14				PASCAL		17.81%		7.97%		1.21%

				146		220		386						PROLOG		14.78%		18.64%		33.39%				PROLOG		20		18		28				PROLOG		2.02%		1.53%		2.42%

				82		141		326						SCHEME		8.30%		11.95%		28.20%				SCHEME		8		14		32				SCHEME		0.81%		1.19%		2.77%

				112		211		336						SMALLTALK		11.34%		17.88%		29.07%				SMALLTALK		42		102		154				SMALLTALK		4.25%		8.64%		13.32%

Sheet1

		0		0		0		0		0		0		0		0

		0		0		0		0		0		0		0		0

		0		0		0		0		0		0		0		0

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		0		0		0		0		0		0		0		0

		0		0		0		0		0		0		0		0

		0		0		0		0		0		0		0		0

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		

		

_1164029296.xls
Chart2

		1993		1993		1993		1993		1993		1993		1993		1993

		1998		1998		1998		1998		1998		1998		1998		1998

		2003		2003		2003		2003		2003		2003		2003		2003

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

342

468

2786

2420

1604

20

1985

386

342

468

2786

2400

1604

1876

1985

386

432

102

2980

2985

1804

3012

2052

426

Sheet1

		Data of 2003

				A1(Is this language introduced and supported by any institution?)		A2(How many institutions use this language as the support for introductory programming courses)		A3(How many students have used this language for their introductory programming courses?)		A4(How many institutions use this language as the support for any courses?)		A5(How many students have used this language for any of their courses?)		A6(How many research projects use this language as support?)		A7(How many research projects deal with this language as subject?)

		ADA		0		4		324		16		432		18		4

		ALGOL		0		0		0		15		64		1		0

		APL		0		0		0		12		20		1		0

		BASIC		0		0		0		17		102		8		0

		C		0		0		0		20		2985		24		0

		C++		0		6		1248		20		2985		46		6

		COBOL		0		0		0		18		1076		3		0

		EIFFEL		0		0		0		12		436		2		0

		FORTRAN		0		0		0		18		1804		12		0

		JAVA		0		8		1433		20		3012		58		4

		LISP		0		0		0		16		362		15		0

		ML		0		0		0		12		32		2		0

		MODULA		1		0		0		12		24		4		0

		PASCAL		1		1		85		18		2052		14		0

		PROLOG		0		0		0		15		61		12		0

		SCHEME		1		0		0		10		20		2		0

		SMALLTALK		1		1		64		14		426		8		3

		Total				20		3154		265				230		17

Sheet2

		Data of 1998

				A1(Is this language introduced and supported by any institution?)		A2(How many institutions use this language as the support for introductory programming courses)		A3(How many students have used this language for their introductory programming courses?)		A4(How many institutions use this language as the support for any courses?)		A5(How many students have used this language for any of their courses?)		A6(How many research projects use this language as support?)		A7(How many research projects deal with this language as subject?)

		ADA		0		4		283		14		342		14		4

		ALGOL		0		0		0		15		54		1		0

		APL		0		0		0		12		24		1		0

		BASIC		0		0		0		17		468		5		0

		C		0		1		50		20		2786		34		0

		C++		0		11		2256		20		2786		36		3

		COBOL		0		0		0		18		926		2		0

		EIFFEL		0		0		0		12		387		3		0

		FORTRAN		0		0		0		18		1604		16		0

		JAVA		0		2		126		14		1876		10		6

		LISP		0		0		0		16		324		26		1

		ML		0		0		0		12		26		2		0

		MODULA		1		0		0		12		22		3		0

		PASCAL		1		1		80		18		1985		24		0

		PROLOG		0		0		0		15		86		22		1

		SCHEME		1		0		0		10		34		3		0

		SMALLTALK		1		1		60		14		386		12		4

		Total				20		2855		257				214		19

Chart1

		1993		1993		1993		1993		1993		1993		1993		1993		1993		1993

		1998		1998		1998		1998		1998		1998		1998		1998		1998		1998

		2003		2003		2003		2003		2003		2003		2003		2003		2003		2003

ADA

BASIC

C

C++

COBOL

EIFFEL

FORTRAN

JAVA

PASCAL

SMALLTALK

342

468

2786

2420

926

387

1604

1876

1985

386

342

468

2786

2400

926

387

1604

1876

1985

386

432

102

2980

2985

1076

436

1804

3012

2052

426

Sheet4

				1993		1998		2003

		ADA		342		342		432

		ALGOL		54		54		64

		APL		24		24		20

		BASIC		468		468		102

		C		2786		2786		2980

		C++		2420		2400		2985

		COBOL		926		926		1076

		EIFFEL		387		387		436

		FORTRAN		1604		1604		1804

		JAVA		20		1876		3012

		LISP		324		324		362

		ML		26		26		32

		MODULA		22		22		24

		PASCAL		1985		1985		2052

		PROLOG		86		86		61

		SCHEME		34		34		20

		SMALLTALK		386		386		426

Sheet4

		0		0		0		0		0		0		0		0

		0		0		0		0		0		0		0		0

		0		0		0		0		0		0		0		0

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		Data of 1993

				A1(Is this language introduced and supported by any institution?)		A2(How many institutions use this language as the support for introductory programming courses)		A3(How many students have used this language for their introductory programming courses?)		A4(How many institutions use this language as the support for any courses?)		A5(How many students have used this language for any of their courses?)		A6(How many research projects use this language as support?)		A7(How many research projects deal with this language as subject?)

		ADA		0		2		246		14		326		6		3

		ALGOL		0		0		0		15		36		0		0

		APL		0		0		0		12		32		0		0

		BASIC		1		1		102		17		1268		6		0

		C		0		2		240		20		2261		26		0

		C++		0		4		396		20		2261		16		6

		COBOL		0		0		0		18		946		1		0

		EIFFEL		0		0		0		12		358		2		0

		FORTRAN		0		0		0		18		1486		24		0

		JAVA		0		0		0		0		0		0		0

		LISP		0		0		0		16		384		15		1

		ML		0		0		0		12		22		0		0

		MODULA		1		0		0		12		38		1		0

		PASCAL		1		10		1642		18		2086		26		0

		PROLOG		0		0		0		15		61		12		1

		SCHEME		1		0		0		10		26		2		0

		SMALLTALK		1		1		60		14		341		8		2

		Total				20		2686		243				145		13

_1164030900.xls
Sheet1

		Data of 2003		How many people consider this Language as their primary programming Language?		How many people know this language		How many percentage code is written in this language		How many user groups dedicated in this language?

		ADA		120		322		8.58		50

		ALGOL		4		146		0.55		1

		APL		48		132		3.26		15

		BASIC		22		874		4.04		57

		C		42		1068		13.4		64

		C++		221		921		16.85		84

		COBOL		33		260		2.62		12

		EIFFEL		52		186		2.41		5

		FORTRAN		108		562		8.31		16

		JAVA		188		824		12.12		108

		LISP		34		460		2.26		24

		ML		52		252		2.7		5

		MODULA		4		184		0.7		4

		PASCAL		14		832		3.33		24

		PROLOG		28		386		1.84		8

		SCHEME		32		326		2.01		2

		SMALLTALK		154		336		9.37		58

		Total		1156				94.35

Sheet2

		Data of 1998		How many people consider this Language as their primary programming Language?		How many people know this language		How many percentage code is written in this language		How many user groups dedicated in this language?

		ADA		80		194		5.73		41

		ALGOL		4		116		0.25		1

		APL		48		112		3.83		12

		BASIC		78		730		8.75		41

		C		260		896		21.3		53

		C++		216		630		15.45		64

		COBOL		36		206		3		10

		EIFFEL		16		80		0.82		6

		FORTRAN		100		436		8.5		14

		JAVA		68		290		4.82		42

		LISP		12		254		1.4		14

		ML		24		76		1.16		2

		MODULA		10		148		0.72		4

		PASCAL		94		700		9.29		35

		PROLOG		18		220		1.73		5

		SCHEME		14		141		1.17		1

		SMALLTALK		102		211		6.98		34

		Total		1180				94.9

Sheet3

		Data of 1993		How many people consider this Language as their primary programming Language?		How many people know this language		How many percentage code is written in this language		How many user groups dedicated in this language?

		ADA		54		134		4.38		39

		ALGOL		4		106		0.37		1

		APL		54		112		5.07		10

		BASIC		160		666		17.55		34

		C		222		598		21.51		52

		C++		68		234		5.71		36

		COBOL		42		186		4.45		8

		EIFFEL		2		28		0.09		4

		FORTRAN		94		396		9.84		35

		JAVA		0		0		0		0

		LISP		18		182		1.52		12

		ML		10		24		0.66		2

		MODULA		14		116		1.18		2

		PASCAL		176		548		16.08		65

		PROLOG		20		146		2.02		4

		SCHEME		8		82		0.76		1

		SMALLTALK		42		112		3.65		24

		Total		988				94.84

Chart4

		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1		1

How many people consider this language as their primary language in 2008

Chart5

		0.0546558704		0.1619433198		0.2246963563		0.0688259109		0.0951417004		0		0.1781376518		0.0425101215

		0.0677966102		0.0661016949		0.2203389831		0.1830508475		0.0847457627		0.0576271186		0.0796610169		0.086440678

		0.1038062284		0.0190311419		0.0363321799		0.1911764706		0.0934256055		0.1626297578		0.0121107266		0.1332179931

		0.0889248181		0.0153597413		0.0234438157		0.1358124495		0.0808407437		0.25869038		0.0024252223		0.083265966

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

Chart6

		0.0889248181		0.0016168149		0.0185933711		0.0153597413		0.0234438157		0.1358124495		0.0210185934		0.0339531124		0.0808407437		0.25869038		0.0274858529		0.0379951496		0.0016168149		0.0024252223		0.0169765562		0.0226354082		0.083265966

ADA

ALGOL

APL

BASIC

C

C++

COBOL

EIFFEL

FORTRAN

JAVA

LISP

ML

MODULA

PASCAL

PROLOG

SCHEME

SMALLTALK

How many people consider this language as their primary language in 2008

Chart7

		1993		1993		1993		1993		1993		1993		1993

		1998		1998		1998		1998		1998		1998		1998

		2003		2003		2003		2003		2003		2003		2003

		2008		2008		2008		2008		2008		2008		2008

ADA

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

0.0546558704

0.2246963563

0.0688259109

0.0951417004

0

0.1781376518

0.0425101215

0.0677966102

0.2203389831

0.1830508475

0.0847457627

0.0576271186

0.0796610169

0.086440678

0.1038062284

0.0363321799

0.1911764706

0.0934256055

0.1626297578

0.0121107266

0.1332179931

0.0889248181

0.0234438157

0.1358124495

0.0808407437

0.25869038

0.0024252223

0.083265966

Sheet4

		Data of 1993		How many people consider this Language as their primary programming Language?		How many people know this language		How many percentage code is written in this language		How many user groups dedicated in this language?				Data of 1998		How many people consider this Language as their primary programming Language?		How many people know this language		How many percentage code is written in this language		How many user groups dedicated in this language?				Data of 2003		How many people consider this Language as their primary programming Language?		How many people know this language		How many percentage code is written in this language		How many user groups dedicated in this language?

		ADA		54		134		4.38		39				ADA		80		194		5.73		41				ADA		120		322		8.58		50

		ALGOL		4		106		0.37		1				ALGOL		4		116		0.25		1				ALGOL		4		146		0.55		1

		APL		54		112		5.07		10				APL		48		112		3.83		12				APL		48		132		3.26		15

		BASIC		160		666		17.55		34				BASIC		78		730		8.75		41				BASIC		22		874		4.04		57

		C		222		598		21.51		52				C		260		896		21.3		53				C		42		1068		13.4		64

		C++		68		234		5.71		36				C++		216		630		15.45		64				C++		221		921		16.85		84

		COBOL		42		186		4.45		8				COBOL		36		206		3		10				COBOL		33		260		2.62		12

		EIFFEL		2		28		0.09		4				EIFFEL		16		80		0.82		6				EIFFEL		52		186		2.41		5

		FORTRAN		94		396		9.84		35				FORTRAN		100		436		8.5		14				FORTRAN		108		562		8.31		16

		JAVA		0		0		0		0				JAVA		68		290		4.82		42				JAVA		188		824		12.12		108

		LISP		18		182		1.52		12				LISP		12		254		1.4		14				LISP		34		460		2.26		24

		ML		10		24		0.66		2				ML		24		76		1.16		2				ML		52		252		2.7		5

		MODULA		14		116		1.18		2				MODULA		10		148		0.72		4				MODULA		4		184		0.7		4

		PASCAL		176		548		16.08		65				PASCAL		94		700		9.29		35				PASCAL		14		832		3.33		24

		PROLOG		20		146		2.02		4				PROLOG		18		220		1.73		5				PROLOG		28		386		1.84		8

		SCHEME		8		82		0.76		1				SCHEME		14		141		1.17		1				SCHEME		32		326		2.01		2

		SMALLTALK		42		112		3.65		24				SMALLTALK		102		211		6.98		34				SMALLTALK		154		336		9.37		58

		Total		988				94.84						Total		1180				94.9						Total		1156				94.35

		How many people consider this Language as their primary programming Language?		1993		1998		2003		2008												1993		1998		2003		2008

		ADA		54		80		120		110		0.0546558704		5.47%						ADA		5.47%		6.78%		10.38%		8.89%

		ALGOL		4		4		4		2		0.004048583								ALGOL		0.40%		0.34%		0.35%		0.16%

		APL		54		48		48		23		0.0546558704								APL		5.47%		4.07%		4.15%		1.86%

		BASIC		160		78		22		19		0.1619433198								BASIC		16.19%		6.61%		1.90%		1.54%

		C		222		260		42		29		0.2246963563								C		22.47%		22.03%		3.63%		2.34%

		C++		68		216		221		168		0.0688259109								C++		6.88%		18.31%		19.12%		13.58%

		COBOL		42		36		33		26		0.0425101215								COBOL		4.25%		3.05%		2.85%		2.10%

		EIFFEL		2		16		52		42		0.0020242915								EIFFEL		0.20%		1.36%		4.50%		3.40%

		FORTRAN		94		100		108		100		0.0951417004								FORTRAN		9.51%		8.47%		9.34%		8.08%

		JAVA		0		68		188		320		0								JAVA		0.00%		5.76%		16.26%		25.87%

		LISP		18		12		34		34		0.0182186235								LISP		1.82%		1.02%		2.94%		2.75%

		ML		10		24		52		47		0.0101214575								ML		1.01%		2.03%		4.50%		3.80%

		MODULA		14		10		4		2		0.0141700405								MODULA		1.42%		0.85%		0.35%		0.16%

		PASCAL		176		94		14		3		0.1781376518								PASCAL		17.81%		7.97%		1.21%		0.24%

		PROLOG		20		18		28		21		0								PROLOG		2.02%		1.53%		2.42%		1.70%

		SCHEME		8		14		32		28		0								SCHEME		0.81%		1.19%		2.77%		2.26%

		SMALLTALK		42		102		154		103		0								SMALLTALK		4.25%		8.64%		13.32%		8.33%

				988		1180		1156		1077

Sheet4

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

		0		0		0		0		0		0		0

ADA

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

Year

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

_1162734975.xls
Chart1

		1993		1993		1993		1993		1993		1993		1993		1993

		1998		1998		1998		1998		1998		1998		1998		1998

		2003		2003		2003		2003		2003		2003		2003		2003

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

2

26

141

102

64

0

86

6

10

35

226

260

24

49

34

10

8

24

116

166

2

182

3

5

Sheet1

		Data of 2003

				B1(Is this language introduced and supported by any Company?)		B2(How many companies use this language as primary language to develop products?)		B3(How many developers consider this language as their primary language?)		B4(How many companies use this language as support for any of their products?)		B5(How many developers know about this language?)		B6(How many commercial applications are developed by using this language?)

		ADA		0		8		36		10		161		12

		ALGOL		0		0		5		0		12		0

		APL		1		0		2		0		8		0

		BASIC		0		10		102		25		1498		25

		C		1		5		76		84		2864		164

		C++		1		166		1275		231		2658		397

		COBOL		1		0		23		3		324		6

		EIFFEL		1		0		12		5		183		0

		FORTRAN		1		2		86		24		406		21

		JAVA		1		175		1397		207		2465		207

		LISP		1		1		12		5		238		5

		ML		1		0		8		1		32		0

		MODULA		0		0		3		1		23		0

		PASCAL		0		3		25		28		1683		25

		PROLOG		1		0		3		1		206		3

		SCHEME		0		0		1		2		38		0

		SMALLTALK		1		5		45		12		312		12

		Total				375		3111						877

Sheet2

		Data of 1998

				Is this language introduced and supported by any Company?		How many companies use this language as primary language to develop products?		How many developers consider this language as their primary language?		How many companies use this language as support for any of their products?		How many developers know about this language?		How many commercial applications are developed by using this language?

		ADA		0		5		26		10		103		8

		ALGOL		0		0		5		1		11		0

		APL		1		0		2		0		8		0

		BASIC		0		28		203		35		1465		35

		C		1		102		694		240		2286		132

		C++		1		138		1075		231		2237		265

		COBOL		1		0		21		3		284		5

		EIFFEL		1		0		11		5		143		0

		FORTRAN		1		3		84		24		321		34

		JAVA		1		20		386		49		402		26

		LISP		1		1		14		5		183		4

		ML		1		0		8		1		24		0

		MODULA		0		0		3		1		18		0

		PASCAL		0		17		117		34		1345		43

		PROLOG		1		0		3		1		146		3

		SCHEME		0		0		1		2		26		0

		SMALLTALK		1		5		45		10		246		10

		Total				319		2698						565

Sheet4

				1993		1998		2003

		ADA		2		10		8

		ALGOL		1		1		0

		APL		0		0		0

		BASIC		26		35		24

		C		141		226		116

		C++		102		260		166

		COBOL		2		3		0

		EIFFEL		3		5		0

		FORTRAN		64		24		2

		JAVA		0		49		182

		LISP		4		5		1

		ML		1		1		0

		MODULA		1		1		0

		PASCAL		86		34		3

		PROLOG		1		1		0

		SCHEME		2		2		0

		SMALLTALK		6		10		5

Sheet4

		0		0		0		0		0		0		0		0

		0		0		0		0		0		0		0		0

		0		0		0		0		0		0		0		0

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet3

		Data of 1993

				Is this language introduced and supported by any Company?		How many companies use this language as primary language to develop products?		How many developers consider this language as their primary language?		How many companies use this language as support for any of their products?		How many developers know about this language?		How many commercial applications are developed by using this language?

		ADA		0		2		15		2		80		2

		ALGOL		0		0		4		1		10		0

		APL		1		0		2		0		8		0

		BASIC		0		16		186		26		896		24

		C		1		64		522		108		1052		85

		C++		1		42		364		106		805		48

		COBOL		1		0		12		2		165		2

		EIFFEL		1		0		7		3		85		0

		FORTRAN		1		14		134		64		316		21

		JAVA		1		0		0		0		0		0

		LISP		1		1		6		4		105		1

		ML		1		0		4		1		16		0

		MODULA		0		0		2		1		12		0

		PASCAL		0		32		254		86		1263		34

		PROLOG		1		0		1		1		132		1

		SCHEME		0		0		1		2		15		0

		SMALLTALK		1		5		32		6		194		4

		Total				176		1546						222

