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Abstract

Context. Several Research areas emerged and have been proceeding inde-
pendently when in fact they have much in common. These include: mutant
subsumption and mutant set minimization; relative correctness and the seman-
tic definition of faults; differentiator sets and their application to test diversity;
generate-and—validate methods of program repair.

Objective. Highlight their analogies, commonalities and overlaps; explore their
potential for synergy and shared research goals.

Method. Introduce and analyze a minimal set of concepts that enable us to
model these disparate research efforts, and explore how these models enable
us to share insights between different research directions, and advance their
respective goals.

Results. Capturing absolute (total and partial) correctness and relative (total
and partial) correctness with a single concept: detector sets. Using the same
concept to quantify the effectiveness of test suites.

Generalizing the concept of mutant subsumption using the concept of dif-
ferentiator sets. Identifying analogies between detector sets and differentiator
sets, and inferring relationships between subsumption and relative correctness.
Conclusion. This paper does not aim to answer any pressing research question
as much as it aims to raise research questions that use the insights gained from
one research venue to gain a fresh perspective on a related research issue.

Keywords: mutant subsumption; mutant set minimization; relative
correctness; absolute correctness; total correctness; partial correctness;
program fault; program repair; differentiator set; detector set.

1. Introduction: Distinctions and Differences

1.1. Four Research Directions

We consider four recent research directions in software engineering:
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e In [16,[17] Kurtz et al. introduce the concept of mutant subsumption as a
criterion for eliminating redundant mutants and minimizing mutant sets;
this concepts is subsequently investigated from various angles [9, 26, 28,
18,113, 112, 116, 129, [25], and tools are proposed to support its use [26].

e In [3] Diallo et al. introduce the concept of relative correctness and use it to
give a semantic definition of a software fault; this concept is subsequently
used by Khaireddine et al. as a basis for modeling program repair |14, [7],
and for quantifying program faultiness [15].

e In [27] Shin et al. introduce the concept of differentiator test as a test
datum that distinguishes a mutant from a base program, and use the
concept to characterize and investigate test diversity in mutation testing;
they also use differentiator tests, accessorily, to define detector tests, which
disprove the correctness of a program with respect to a specification. In
[20], Mili generalizes the concepts of differentiator sets and detector sets
by considering the possibility of program divergence (i.e. failure to ter-
minate normally), by considering non-deterministic specifications, and by
distinguishing between partial correctness and total correctness.

e In |6], Gazzola et al. present a survey of program repair, a discipline that
has garnered a great deal of attention over the past two decades, and has
given rise to a stream of increasingly sophisticated tools.

1.2. Analogies and Overlaps

Even though these four directions of research have emerged and evolved
independently, and were driven by different research goals, they have much in
common. In this paper we highlight the analogies and overlaps between these,
and we explore the potential insights that they offer, as well as the research
questions that they raise.

e Detector Sets and Correctness. Given a program P and a specification R,
the detector set of P with respect to R is the set of inputs z for which
execution of P on x disproves the correctness of P with respect to R. In
section [3] we define detector sets for total correctness and partial correct-
ness and use them to characterize absolute (partial and total) correctness
and relative (partial and total) correctness.

o Differentiator Sets and Subsumption. Given two programs P and @, the
differentiator set of P and @ is the set of inputs = such that executions
of P and @ on z yield different outcomes. In section [] we give three
definitions of differentiator sets, which depend on what we consider to be
the outcome of an execution, under what condition we can compare two
outcomes, and under what condition we consider that two comparable
outcomes are identical. From these three definitions of differentiator sets,
we derive three different definitions of mutant subsumption.



o Subsumption as Relative Correctness. By considering how relative cor-
rectness [21), |3] can be characterized by means of detector sets, and sub-
sumption [16, [17] can be characterized by means of differentiator sets, we
show in section [0l that these two properties are actually equivalent. This
is interesting, given that these properties were introduced independently,
albeit simultaneously (in 2014), and have so far evolved separately.

e Prevalence of Subsumption/ Relative Correctness. Subsumption experi-
ments generate mutants of a base program then seek to highlight subsump-
tion relationships between the mutants; on the other hand, program repair
experiments generate mutants as repair candidates then seek to highlight
relative correctness relationships between them. Given that subsumption
and relative correctness are equivalent, these two experiments are essen-
tially identical, and ought to produce similar outcomes. Yet even a casual
review of published literature in mutant subsumption and program repair
reveals a paradox: whereas subsumption graphs are usually fairly dense
(in terms of number of arcs for a given number of nodes), program repair
methods struggle mightily to find solutions. This seems to suggest that
subsumption algorithms may be prone to loss of precision, and/or that
program repair algorithms may be prone to loss of recall. In section [0l we
present a statistical model that estimates the prevalence of subsumption/
relative correctness relations between mutants.

o Mutant Set Minimization as an Optimization Problem. Subsumption was
introduced as a means to minimize the cardinality of a mutant set [16].
Mutant set minimization is essentially an optimization problem; as such,
it ought to be defined by two parameters, namely the objective function to
minimize, and the constraint under which this minimization is attempted.
While the published literature is clear about the objective function, it does
not include a formal definition of the optimization constraint. In section
[@ we propose a definition of mutant set effectiveness, and formulate the
constraint of mutant set minimization as the condition that the minimal
mutant set has the same effectiveness as the original set; we show that
removing a subsumed mutant has no impact on the effectiveness of the
mutant set, as defined.

In section [2] we introduce some elementary mathematics that we use in the
paper to carry out our discussions. In section [§] we summarize our results,
critique them, discuss threats to their validity, and sketch directions of further
research.

2. Relational Mathematics

2.1. Sets

Because we use sets to represent program spaces, we represent sets by C-like
variable declarations. If we define a set S by the variable declarations:



xType x; yType y;

then S is the cartesian product of the sets of values that the types xType and
yType represent; elements of S are denoted by lower case s, and are referred
to as states. Given an element s of S, we may refer to the x-component (resp.
y-component) of s as z(s) (resp. y(s)). But we may, for the sake of convenience,
refer to the x component of states s, s, s” (e.g.) simply as z, a/, z”.

2.2. Operations on Relations

A relation on set S is a subset of the cartesian product S x S; special
relations on set S include the universal relation L = S x S, the identity relation
I ={(s,¢)|s’ = s} and the empty relation ¢ = {}. Operations on relations
include the set theoretic operations of union (U), intersection (N), difference(\)
and complement (R = L\ R). They also include the product of two relations,
denoted by Ro R’ (or RR’, for short) and defined by

Ro R ={(s,s')|3s” : (s,s") € RA(s",5") € R'}.

The converse of relation R is the relation denoted by R and defined by R =
{(s,s")|(s',s) € R}. The domain of relation R is denoted by dom(R) and defined
by dom(R) = {s|3s’ : (s,s") € R}. The pre-restriction of relation R to set T is
the relation denoted by 7\ R = {(s,s")[s € T'A (s,5") € R}.

2.3. Properties of Relations

A relation R is said to be reflexive if and only if I C R; relation R is said to
be symmetric if and only if R = R; relation R is said to be transitive if and only
if RR C R; relation R is said to be asymmetric if and only if RN R = ¢; relation
R is said to be antisymmetric if and only if RN R C I. A relation R is said to be
an equivalence relation if and only if it is reflexive, symmetric and transitive. A
relation R is said to be a partial ordering if and only if it is reflexive, transitive
and antisymmetric. A relation R is said to be a strict partial ordering if and
only if it is transitive and asymmetric.

A relation R is said to be deterministic (or: to be a function) if and only if
RR C I. A relation R is said to be total if and only if RL = L. A relation R
is said to be a wvector if and only if RL = R; a vector V on set S is a relation
of the form V = A x S for some non-empty subset A of S. We may use vectors
to define pre-restrictions and post-restrictions: Given a relation R and a vector
V = A x S, the pre-restriction of R to A can be written as V' N R and the
post-restriction of R to A can be written RNV. A relation R’ is said to refine
a relation R if and only if

RLNRLN(RUR') = R;

this is denoted by R’ O R or R C R’. When relations are used as specifications,
refinement simply means that R’ represents a stronger specification than R; in
terms of pre/post specifications, this is equivalent to having weaker precondi-
tions and stronger postconditions [3, I, 124, [10].



3. Detector Sets and Correctness

3.1. Program Functions

We can define the semantics of a program by means of a function from an
input space to an output space, or by means of a function from initial states to
final states. For the sake of simplicity, we adopt the latter model, as it enables
us to work with homogeneous relations, without loss of generality. We consider
a program P on space S; execution of P on an initial state s may terminate in
a final state s" after a finite number of steps; conversely, it may enter an infinite
loop or attempt an illegal operation such as a division by zero, an array reference
out of bounds, reference to an nil pointer, the square root of a negative number,
the log of a non-positive number, etc. When execution of P on s terminates
normally in a final state s’, we say that it converges on s, else we say that it
diverges.

Given a program P on space S, the function of program P, which we also
denote by P, is the set of pairs (s, s’) such that if execution of P starts in state
s, it converges in final state s’. Consequently, the domain of P is the set of
initial states on which execution of P converges.

3.2. Absolute Correctness

Absolute correctness is a property between a program and a specification;
we discuss it in this section. Following decades-old tradition, we distinguish
between two forms of program correctness: total correctness and partial cor-
rectness [19]. A specification on space S is a relation on S. For the sake of our
discusions herein, we consider that programs are deterministic, but specifica-
tions may be non-deterministic. The following definition, due to [23], introduces
absolute total correctness.

Definition 1. Program P on space S is said to be totally correct with respect
to specification R on S if and only if:

dom(R N P) = dom(R).

The domain of (RN P) is called the competence domain of P with respect to R;
it is the set of initial states for which P behaves according to R. Figure [Ilshows
a simple example of a (non-deterministic) specification R and two programs P
and P’ such that P is correct with respect to R and P’ is not; the competence
domains of P and P’ are shown by the ovals. Even though it looks different,
this definition is equivalent, modulo differences in notation, with traditional
definitions of total correctness [19, I8, [10]. We present a brief argument to
this effect: Given that dom(R N P) C dom(R) is a set theoretic tautology, the
condition of Definition [Tl is equivalent to:

dom(R) C dom(RN P).
By set theory, this can be interpreted as:

Vs :s € dom(R) = s € dom(RN P).
By Definition of domain, this can be written as:



P R P’
0 \ 0 0 0 0 0
1 \ 11 1 1
2 \ 2 2 2 2 2
3 3 3 3 3 3
dom(RN P) ={1,2} dom(RN P') = {1}
= dom(R) = P correct # dom(R) = P’ incorrect

Figure 1: Total Correctness

Vs:s € dom(R)= (3’ : (s,¢') € (RN P).

Since P is deterministic, we can replace s’ by P(s), hence:
Vs :s € dom(R) = s € dom(P) A (s, P(s)) € R.

If we interpret:

e s € dom(R) as: s satisfies the precondition implied by R,
e s € dom(P) as: execution of P on s terminates,
e (s,P(s)) € R as: P(s) satisfies the postcondition implied by R,

then we find that this is exactly the traditional definition of total correctness
[19, 18, 15].

The following definition, due to [22], mimics the style of Definition [ to
define partial correctness.

Definition 2. We say that P is partially correct with respect to R if and only

if:
dom(R N P) = dom(R) N dom(P).

A similar argument to what we offered above can establish that our definition
is equivalent to traditional definitions of partial correctness [11, 15, [19, [8]. See
Figure Program @ is partially correct with respect to R because for any
initial state of dom(R) for which it terminates, program @ delivers a final state
that satisfies specification R; by contrast, program @’ is not partially correct
with respect to R, even though it terminates normally for all initial states in
dom(R), because it does not satisfy specification R; neither @ nor @’ is totally
correct with respect to R.

8.8. Testing for Absolute Correctness

Whereas the distinction between total correctness and partial correctness
has been at the center of studies of correctness and correctness verification, it
has not been considered in studies of program testing; yet testing a program
for total correctness is different from testing it for partial correctness, in the
following sense. We consider a specification R on space S and a program P
on S, and we let s be an element of dom(R); we assume that execution of P
on s diverges. The conclusion we draw from this observation depends on the
standard of correctness we are considering:



Q
0 0 0 0 0 0
/1 1 11 1
2 2 2 2 2 2
3/3 3 3 3 3

dom(RN Q) = {1} dom(RN Q") = {}
= dom(R) N dom(Q) dom(R) N dom(Q’) = {1, 2}
= @ part. correct = Q' not part. correct

Figure 2: Partial Correctness

e Under total correctness, we conclude that program P fails the test and is
proven incorrect with respect to R.

e Under partial correctness, in theory we conclude that program P has
passed the test and is not proven to be incorrect. Though in practice
most testers will draw no conclusion on P, but conclude instead that the
test s is invalid, and choose another test.

8.4. Detector Sets

Given a program P on space S and a specification R on S, the detector set of
P with respect to R is the set of initial states in S which disprove the correctness
of P with respect to R; given that there are two standards of correctness (partial
and total), we get two versions of detector sets.

Definition 3. Given a program P on space S and a specification R on S,

e The detector set of P with respect to R for total correctness is denoted by
Ap(R, P) and defined by:
Ar(R, P) = dom(R) N dom(R N P).

e The detector set of P with respect to R for partial correctness is denoted
by Ap(R, P) and defined by:
Ap(R, P) = dom(R) N dom(P) N dom(RN P).

Figure[llshows in red the detector sets of program P with respect to specification
R as a function of dom(P), dom(R) and dom(R N P). Since total correctness
is a stronger property than partial correctness, it is a harder property to prove,
hence an easier property to disprove: Indeed, the detector set of P for total
correctness is a superset of the detector set of P for partial correctness (because
it is a larger set, it offers more opportunities to disprove total correctness than
partial correctness).

Detector sets are useful and relevant when we discuss program testing; the
simple Propositions below show that they are useful when we discuss program
correctness verification as well.

Proposition 1. Program P is totally correct with respect to specification R if
and only if its detector set with respect to R for total correctness if empty.



dom(Rn P)

dom(R) 1 dom(P)

Total Correctness: Arp(R, P) Partial Correctness: Ap(R, P)

Table 1: Detector Sets for Total and Partial Correctness

Proof. Necessity stems trivially from Definition [Il Sufficiency can be proved
by observing that whenever an intersection of two sets is empty, each set is a
subset of the complement of the other. From dom(R)Ndom(R N P) = ), we infer
dom(R) C dom(R N P); this in conjunction with the tautology dom(R N P) C
dom(R), yields that P is totally correct with respect to R. qed

A similar proof yields the following Proposition, which we present without
proof.

Proposition 2. Program P is partially correct with respect to specification R
if and only if its detector set with respect to R for partial correctness if empty.

Of course, if and only if a program is correct, the set of inputs that disprove
its correctness ought to be empty.

3.5. Relative Correctness

Whereas correctness is a property that involves a specification and a pro-
gram, relative correctness involves a specification, say R, and two candidate
programs, say P and P’, and ranks P and P’ according to how close they are to
being correct. The following definitionintroduces the concept of relative correct-
ness. Since to be correct means to have an empty detector set (per Propositions
[0 and 2)), it is natutal to define relative correctness by means of inclusion of
detector sets; whence the following definitions.

Definition 4. Given a specification R on space S and two programs P and P’
on S, we say that P’ is more-totally-correct than P with respect to R if and
only if:

Ar(R,P") C Ar(R, P).

Definition 5. Given a specification R on space S and two programs P and P’
on S, we say that P’ is more-partially-correct than P with respect to R if and
only if:

Ap(R,P") C Ap(R,P).



Q Q' R P P
0 010 >0 0 » 0 0 0 0 0
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2 \ 2 12 \ 2 2 2 12 \ 212 / 2
3 3 3 3 3 3 3 3 3 3
Preserving Correct Behavior Preserving Correctness
(RNQ)C (RNQ") (dom(RN P) C dom(RN P'))

Figure 3: Relative Total Correctness

Figure B illustrates relative total correctness by showing a specification (R)
and two sets of programs: Q' is more-correct than ) with respect to R by virtue
of imitating the correct behavior of @; P’ is more-correct than P with respect to
R by virtue of a different correct behavior. Relative total correctness culminates
in absolute total correctness in the following sense: a totally correct program is
more-totally-correct than any candidate program. Figure M illustrates relative
partial correctness by showing a specification (R)) and two sets of programs: @’
is more-partially-correct than ) because it is more totally correct than @; by
contrast, P’ is more-partially-correct than P by virtue of diverging more often
(from the standpoint of partial correctness, a program that fails to converge
evades accountability, and is considered partially correct).

Note the following relation between the detector sets of a program P with
respect to a specification R:

Ap(R, P) = dom(P) N Ar(R, P).

From this simple equation, we can readily infer two properties about absolute
correctness and relative correctness:

o Absolute Correctness. If a program P is totally correct with respect to
specification R, then it is necessarily partially correct with respect to R.

e Relative Correctness. A program P’ can be more-partially-correct than a
program P either by being more-totally-correct (hence reducing the term
Ar(R, P)) or by diverging more widely (hence reducing the term dom(P)),
or both.

To illustrate the partial ordering properties of relative total correctness, we
consider the following specification on space S of integers, defined by

R={(s,s)1<s<3As =543}

We consider twelve candidate programs, listed in Table 2l Figure Bl shows how
these candidate programs are ordered by relative total correctness; this ordering
stems readily from the inclusion relations between the differentiator sets of the
candidate programs with respect to R; the differentiator sets are given in Table
Bl to allow interested readers to check Figure The green oval shows those



Q Q' R P P
0 0 (0 >0 0 » 0 0 0 0
1 \ 1|1 11 1 (1 \ 11
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Q' is more-partially-correct than Q P’ is more-partially-correct than P
by virtue of being more-totally-correct: by virtue of diverging more broadly
Ap(R,Q") =10 Ap(R,P')=10
Ap(R,Q) = {0} Ap(R, P) = {0}

Figure 4: Relative Partial Correctness

p0: {s=pow(s,3)+4;} p4: {s=pow(s,3)+s+1;} p8: {s=pow(s,3)+s*s-4%s+8;}

pl: {s=pow(s,3)+5;} p5: {s=pow(s,3)+s;} p9: {s=2*pow(s,3)-6*s*s+11%*s-3;}
p2: {s=pow(s,3)+6;} p6: {s=pow(s,3)+s*s-5*s+9;} | pl0:{s=3*pow(s,3)-12*s*s422%s-9;}
p3: {s=pow(s,3)+s+2;} | p7: {s=pow(s,3)+s*s-83%s+5;} | pll:{s=4*pow(s,3)-18*s*s+33%s-15;}

Table 2: Candidate Programs for Specification R

candidates that are absolutely correct, and the orange oval shows candidate
programs that are incorrect; the red oval shows the candidate programs that
are least correct (they violate specification R for every initial state in the domain
of R, hence their detector set is all of dom(R)). This example is clearly artificial,
but we choose it for its illustrative nature.

Note that all twelve programs in this example converge for all initial states
in S, hence dom(P;) = S for all P;. Consequently, the detector sets of these
programs for total correctness are identical to their detector sets for partial
correctness; hence their ordering by relative partial correctness is identical to
their ordering by relative total correctness, as shown in Figure

Table ] summarizes and organizes the definitions of correctness to help con-
trast them.

In [21), 4], total relative correctness is defined, not by comparing detector
sets, as we do in Definition @ but by comparing competence domains. The
following Proposition provides that these definitions are equivalent, so as to
assure us that prior results on relative correctness [14, [7] hold for the current
definition.

Proposition 3. Given a specification R on space S and two programs P and

p0 [ {1,2,3} Tpl [{L23}[[p2 | {1,2,3}
p3 | {2,3} pd | {1,3} || p5 | {1,2}
p6 | {1} p7 | {3} p8 | {2}

P9 | {} plo | {} pll | {}

Table 3: Detector Sets of Candidate Programs for Total (and Partial) Correctness
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Figure 5: Ordering Candidate Programs by Relative Total (and Partial) Correctness with
Respect to R

| Partial Correctness | Total Correctness

Absolute Correctness
P is correct iff: Ap(R,P)=0 AT(R,P)=10

Relative Correctness
P’ is more-correct than P iff: | Ap(R,P’) C Ap(R,P) | Ar(R,P’) C Ar(R,P)

Table 4: Definitions of Correctness by Means of Detector Sets
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P’ on S, P’ is more-totally-correct than P if and only if:
dom(RN P) C dom(RN P’).

Proof. Sufficiency can be inferred readily by inverting the inequality (and
complementing both sides) then taking the intersection with dom(R) on both
sides. Necessity can be proved by using the set theoretic identity to the effect
that the two conditions below are equivalent:

ANBCANC, ANCCANB.

This lemma can be proved by inverting the first inequality, applying DeMorgan’s
laws, then taking the intersection with A on both sides. From the hypothesis:
dom(R) N dom(R N P'") C dom(R) N dom(RN P)
we infer (by the lemma above):
dom(R) N dom(R N P) C dom(R) N dom(R N P’),
which we simplify into:
dom(RN P) C dom(RN P’),
since dom(R N P) and dom(R N P’) are both subsets of dom(R). qed

4. Differentiator Sets and Mutant Subsumption

Whereas in the previous section we discuss detector sets and their relation-
ship to relative correctness, in this section we discuss differentiator sets and
their relationship to mutant subsumption.

4.1. Ezxecution Outcomes

The differentiator set of two programs P and ) on space S is the set of ini-
tial states for which execution of P and execution of @) yield distinct outcomes.
Whenever P and @ both converge for some initial state s, then their outcomes
are the final states, P(s) and Q(s) that they yield; determining whether they
have the same outcome amounts to checking P(s) and Q(s) for equality. But
if one or both programs diverge, determining whether they have the same out-
come or different outcomes becomes less clear-cut, more debatable. Given the
possibility of divergence, we must consider the following questions, on which the
definition of differentiator set depends:

o What is the outcome of a program’s execution? In particular, is divergence
an outcome or the absence of an outcome?

o When are two outcomes comparable? In particular, is divergence compa-
rable to the outcome of a program that converges?

o When are two comparable outcomes identical or distinct? In particular,
is divergence a different outcome from any convergent outcome? Are two
divergent outcomes identical or incomparable?

12



Space S Program P Mutation | Divergence
i=100; x=0; Failure to
int i, x; while(i!=0) {x=x+1; i=i-1;} i-1 — i+1 | Terminate
int a[100], x; i=0; x=0.0; Array Reference
int i; while (i<100) {x=x+alil;i=i+1;} | < — <= Out of Bounds
int x; x=100; y=0; Division
float y; while (x>0) {y=y+1./x; x=x-1;} > — >= By Zero
cin >> x; Illegal
if (x>=0) {y=sqrt(i+x);} Arithmetic
float x,y; else {y=sqrt(1-x);} 1-x — 1+x | Operation

Table 5: Examples of Mutation Operations Causing Divergence

How we define differentiator sets depends on how we answer these questions.
Though these questions may sound like mundane academic exercises in hair-
splitting, we argue that divergence is in fact a common occurrence in mutation
testing; indeed many mutation operators are prone to cause divergence even
when the base program converges; this includes mutation operators that are
applied to guards that programmers routinely include to avoid illegal operations.
Table [ shows examples of common mutation operators which cause common
program patterns to diverge.

4.2. Differentiator Sets

The differentiator set of two programs P and () on space S is the set of
initial states s such that the execution of programs P and ) on s yields different
outcomes |27, 120]. In light of the foregoing discussions, we adopt three definitions
of differentiator sets, which reflect three sensible interpretations of what it means
for two program executions to yield distinct outcomes.

e Basic Interpretation. We assume that programs P and @ converge for
all initial states in S, and their outcome is their final state. Their basic
differentiator set (which we denote by do(P, @)) is the set of initial states
for which their final states are distinct.

e Strict Interpretation. We do not assume that P and @ converge for all
initial states, but we restrict their differentiator set to those initial states
for which they both converge and produce distinct outcomes; we denote
their strict differentiator set by 61 (P, Q).

e Broad Interpretation. We do not assume that P and ) converge for all
initial states, but we restrict their differentiator set to those initial states
for which they both converge and produce distinct outcomes along with
the initial states for which only one of them converges; we assume that
a program that diverges has a different outcome from a program that
converges, regardless of the final state of the latter; we denote the broad
differentiator set by d2(P, Q).

13



The following definition gives explicit formulas of differentiator sets under the
three interpretations given above. To understand these definitions, it suffices to
note the following;:

e The set of initial states for which program P (resp. Q) convergesis dom(P)
(resp. dom(Q)).

e The set of initial states for which the final states of P and @ are identical
is dom(P N Q).

e The following inequalities hold by set theory:
dom(P N Q) C dom(P) N dom(Q) C dom(P)U dom(Q).

Definition 6. The definition of a differentiator set of two programs P and Q
depends on how we define the outcome of a program, under what condition
we consider that two outcomes are comparable, and under what condition we
consider that two comparable outcomes are identical or distinct.

e The basic differentiator set of two programs P and Q is defined as:

do(P,Q) = dom(P N Q).

o The strict differentiator set of two programs P and Q is defined as:

01(P,Q) = dom(P) N dom(Q) N dom(P N Q).

e The broad differentiator set of two programs P and Q is defined as:

J2(P, Q) = (dom(P) U dom(Q)) N dom(P N Q).

Figure[@lillustrates the three definitions of differentiator sets (represented in red
in each case). Whenever we want to refer to a differentiator set of programs P
and @ without specifying the interpretation, we use the notation 6(P, Q). Note
that having three different definitions of differentiator sets means that we now
have three distinct definitions of what it means to kill a mutant:

e Test suite T kills mutant M of program P in the basic sense if and only
if: TNég(P, M) # 0.

e Test suite T kills mutant M of program P in the strict sense if and only
if: TN6 (P, M) # 0.

e Test suite T kills mutant M of program P in the broad sense if and only
if: TNoa(P, M) # 0.

For illustration of differentiator sets under the basic interpretation, we con-
sider space S defined by a single integer variable, and we consider two programs
that converge for all initial states:

P: {s=pow(s,4)+35*s*s+24;}
Q: {s=10*pow(s,3)+50%*s;}
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The functions of these programs are:
P={(s,¢)]s = s* +35s% + 24}.
Q = {(s,s)|s’ = 10s3 + 50s}.
Their intersection is:
PNQ=/{(s,)|s* + 355> +24 = 10> + 505 A 8" = s* + 3552 + 24}.
The domain of their intersection is:
dom(P N Q) = {s|s* + 35s? + 24 = 10s> + 50s}.
Solving this equation in the fourth degree, we find:
dom(PN Q) ={s|]1 <s<4}.
Taking the complement, we find:
30(P,Q) = dom(P,Q) = {s|s <1V s >4}.
For illustration of differentiator sets under the strict and broad interpretation,
we consider the following programs P and @ on space S defined by an integer
variable s.

P: {if (s<0) {while (s'=0) {s=s-1;}}
else {s=pow(s,4)+35*s*s+24;}}

Q: {if (s>5) {while (s!=5) {s=s+1;}}
else {s=10*pow(s,3)+50%*s;}}

Note that P fails to converge for all s less than zero (since it enters an infinite
loop) and @ fails to converge for all s greater than 5 (for the same reason). The
functions of these programs are:

P =/{(s,8)|s >0Ns =s*+355% + 24}.

Q={(s,8)]s <5ANs =10s>+50s}.
From these definitions, we compute the following parameters:

dom(P) = {s|s > 0}.

dom(Q) = {s|s < 5}.

PNQ={(s5)0<s<5As*+355%+24 = 105> + 50s A s’ = 105> + 50s}.

dom(PN Q) = {s]0 < s <5As*+ 3552 + 24 = 1053 + 50s}.
By solving the equation (s* + 35s% + 24 = 10s3 + 50s), we can simplify the
formula of dom(P N Q) as:

dom(PN Q) ={s|]1 <s<4}.
Whence we find the following results for the strict differentiator set and the
broad differentiator set of programs P and Q:

01(P,Q) ={0,5}.

02(P,Q) = {s|]s <0V s >5}.
Interpretation:

o Strict Differentiator Set. The set of initial states that expose the difference
between P and @ is {0, 5} because the interval [0..5] includes all the initial
states where both P and @ are defined (dom(P)Ndom(Q)), and programs
P and @ return the same results for initial states in the interval [1..4]
(dom(PNQ)).

e Broad Differentiator Set. Any initial state outside the interval [1..4] ex-
poses the difference between P and @), either because they both converge
but give different results (if the initial state is 0 or 5) or because one of
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dom(P N Q)

dom(Q) dom(P N Q)

dom(P) n dom(Q)

dom(P)

(SO(P, Q) (51(P7 Q)

dom(Q) dom(P N Q)

dom(P)

dom(P) U dom(Q)

52(P7 Q)

Figure 6: Three Definitions of Differentiator Sets (shown in red)

them converges while the other diverges (for s greater than 5, P converges
but @ does not; for s negative, @ converges but P does not).

As further illustration of differentiator sets, we consider the space S defined
by a single variable s of type integer, and we consider the following programs:

P {s=pow(s,5)+pow(s,4)+9;}.
Q@ {s=2*pow(s,5)+pow(s,4)-5*pow(s,3) +4*s+9; }.

Assuming perfect arithmetic, these two programs are total on space S; their
competence domain is:
dom(P N Q)
= {substitutions}
{s]s® +s* +9 =25 +s* — 55 +45+9}
= {simplification}
{s]s® — 55> + 45 = 0}
= {factoring}

16



{sls(s = 1)(s = 2)(s+1)(s+ 2) = 0}
= {simplification}
{-2,-1,0,1,2}.
Hence the basic differentiator set of P and @ is:

do(P,Q) = {sls < —-2Vvs>2}

See Figure [T for illustration.

To illustrate strict and broad differentiator sets, we consider non-total ver-
sions of P and @); we use artificial devices to make these programs non-total, to
serve our illustrative purposes. We define programs P’ and Q' as follows:

P’ {if (s<-10 || s>5) {abort();}
else {s=pow(s,5)+pow(s,4)+9;}}.

Q' {if (s<-5 || s>10) {abort();}
else
{s=2*pow (s,5)+pow(s,4)-5*pow(s,3)+4*s+9; }}.

The functions of these programs are given as:
P ={(5,8)-10<s<5As =5 +5* 49},

Q ={(s,8)-5<s<10As =25+ 5* —55° + 45+ 9}.

The domain of the intersection of these two functions is the same as that of P
and @, namely:
dom(P'NQ") ={-2,-1,0,1,2}.

On the other hand,
dom(P") N dom(Q") = {s| — 5 < s <5},
dom(P") U dom(Q") = {s| — 10 < s < 10},
From this, we can derive easily:
n(P,Q") ={-5,—-4,-3,3,4,5},
52(P', Q')
={-10,-9,-8,—-7,-6,—5,—4,-3,3,4,5,6,7,8,9,10}.

We leave it to the reader to check that these are indeed the sets of initial states
for which programs P’ and Q' have distinct outcomes for the selected definitions
of outcomes and outcome comparisons. Figure [§ helps in this analysis.
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Figure 7: Basic differentiator Set for P and @
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dom(Q")
dom(P")
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Figure 8: Strict and Broad differentiator Sets for P’ and Q'

4.8. Differentiator Sets and Mutant Subsumption

In |16, [17) Kurtz et al. define mutant subsumption as follows: Given a
program P and two mutants thereof M and M', we say that M’ subsumes M
(in the sense of true subsumption) with respect to P if and only if:

P1 There exists a test s such that P and M’ compute different outcomes on
s.

P2 For every possible test on P, if M’ computes a different outcome from P,
then so does M.

The following Proposition formulates the condition of true subsumption in
terms of basic differentiator sets.

Proposition 4. Given a program P on space S and two mutants M and M’
on S, such that P, M and M’ converge for all s in S, M’ subsumes M with
respect to P in the sense of true subsumption if and only if:

0 C 8o(P,M") C 8o(P, M).

Proof. We prove in turn that P1 is equivalent to § C do(P, M’) and that P2 is
equivalent to 6g(P, M') C éo(P, M). We use the simple lemma that the set of
states for which two functions F' and G produce the same outcome (F(s) = G(s))
is dom(F N G).
P1 is interpreted as:

ds: P(s) # M'(s)
< {Interpretation}

0 C {sIP(s) £ M'(s)}
< {Set theory}
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0 C {s|P(s) = M'(s)}
< {Lemma above}
0 C dom(PN M)
< {Definition of dp}
0c 50(P, M/).
P2 is interpreted as:
Vs: P(s) # M'(s) = P(s) # M(s)
< {Set theory}
{8P(5) £ M'(3)} C {5 P(s) £ M(s)}
< {Inverting the inclusion}
{s|P(s) = M(s)} € {s|P(s) = M'(s)}
< {Lemma above}
dom(P N M) C dom(PNM')
< {Definition of dp}
50(P,M’)§50(P,M) qed

This Proposition provides that the original ([16, [17]) definition of true sub-
sumption can be defined by means of basic differentiator sets; but this definition
applies only if the base program and its mutants converge for all initial states.
If we want to make provisions for the possibility that the base program (P) and
its mutants (M, M’) may diverge, we can use strict differentiator sets and broad
differentiator sets. Whence the following definitions.

Definition 7. Given a program P on space S and mutants M and M' of P,
we say that mutant M’ subsumes mutant M in the sense of basic subsumption
if and only if:

0 C do(P,M") C 6o(P, M).

Definition 8. Given a program P on space S and mutants M and M’ of P,
we say that mutant M’ subsumes mutant M in the sense of strict subsumption
if and only if:

0 C (P, M) Co(P,M).

Definition 9. Given a program P on space S and mutants M and M’ of P,
we say that mutant M’ subsumes mutant M in the sense of broad subsumption
if and only if:

0 C 6o(P, M) C 53(P, M).

Of course, having three different definitions of mutant subsumption may
lead to three different subsumption graphs, whence potentially three different
minimal mutant sets.

In [16, 17], Kurtz et al. introduce dynamic subsumption as follows: Given a
program P, a test suite T and two mutants of P, M and M’, we say that M’
dynamically subsumes M with respect to P for test suite T if and only if:

D1 There exists a test ¢ in T such that P and M’ compute different outcomes
on t.
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D2 For every possible test ¢ in T, if M’ computes a different outcome from
P, then so does M.

We argue that once we admit the possibility that programs and mutants may
diverge for some inputs, then there is really no difference between true subsump-
tion and dynamic subsumption: dynamic subsumption with respect to program
P and test data T is the same as subsumption with respect to the program
whose function is 7\ P, the pre-restriction of P to T'. Given a program P and a
set T', the program whose function is 1\ P is:

if (s in T) {P;} else {abort();}.

5. Correctness and Subsumption

So far we have used detector sets to define (partial and total) correctness, and
we have used differentiator sets to define (basic, strict, and broad) subsumption.
In this section we present two simple Propositions that relate correctness and
subsumption.

Proposition 5. We consider a program P on space S and two mutants M and
M’ such that P, M and M’ converge for all states in S. Then M’ subsumes M
in the sense of basic subsumption if and only if M’ is more-totally-correct than
M with respect to (the function of) P, and M’ is not (absolutely) totally correct
with respect to (the function of) P.

Proof. Since P converges for all s in S, dom(P) = S. Hence the detector set
of M and M’ for total correctness with respect to the function of P (viewed as
a specification) is:

dom(P) N dom(P N M)=5SnNdom(PNM)= dom(PNM).
This is the same as the basic differentiator set of P and M. The two clauses of
the basic subsumption relation of M’ over M with respect to P can be written
as (once we replace differentiator sets by the corresponding detector sets):

P1 @ Cc Ar(P, M'), which according to Proposition [l is equivalent to: M’ is
not (absolutely) totally correct with respect to (the function of) P.

P2 Ap(P,M') C Ap(P, M), which according to Definition @l is equivalent to:
M’ is more-totally-correct than M with respect to (the function of) P.

qed

This Proposition means that the subsumption graphs seen in [16, [17, |9, [26,
28,118,112,116,129], represent essentially the same relation as the graphs of relative
correctness seen in [2, 13, 15, [14]; the only meaningful/interesting difference is
that, while in relative correctness we are interested in the top of the graph, which
represents the absolutely correct programs, in subsumption we are interested in
the layer immediately below the absolutely correct program, which represents
the mazimally stubborn mutants [30)].
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Proposition 6. We consider a program P on space S and two mutants M and
M' of P. Then M’ subsumes M in the sense of strict subsumption if and only
if M is more-partially-correct than M with respect to (the function of) P, and
M’ is not (absolutely) partially correct with respect to (the function of) P.

Proof. If and only if M’ subsumes M in the strict sense with respect to P, we
can write:

0 C o (P, M) C 6 (P, M).
Interestingly, the strict differentiator set of P and M is the same as the detector
set of M with respect to (the function) of P for partial correctness. We rewrite
this condition as:

0 c Ap(P,M') C Ap(P,M).
According to Proposition [2] the first inequation is equivalent to: M’ is not
partially correct with respect to (the function of) P. According to Definition
Bl the second inequation is equivalent to: M’ is more-partially-correct than M
with respect to (the function of) P. qed

For illustration, we consider the following program P on space .S defined as
the set of integers:
p: {if ((s<1) || (s>3)) {abort(O);}
else {s=3+s*s*s;}}
where {abort();} is a special program which fails whenever it is called, hence
its function is empty. The function of this program is:

P={(s,8)1<s5s<3As =543}

This is the same relation as specification R presented in section 3.5 though
we changes its name from R (a specification used as a reference for relative
correctness) to P (a program used as a reference for mutant subsumption). Also,
for mutants of P, we take the programs that we used in section 3.5 though we
rename them as (m0, m1, m2, ..., m11), listed in Table [6] and we rank them by
subsumption with respect to P. These programs are not derived from P by
any known mutation operator we know of, but we use them for the purpose of
illustration.

Since program P does not converge for all s (to say the least, since it con-
verges for only three initial states) we cannot use basic subsumption; we will use
strict subsumption instead. Table [ shows the strict differentiator set of each
mutant with respect to P, and Figure [0 shows the strict subsumption graph of
the mutants m0, m1, m2, ... m11 with respect to program P. Not surprinsingly,
this is the exact same graph as that of Figure B except for the different names
(mi vs pi). In Figure[@we highlight (in blue) the maximally subsuming mutants;
they are the most (relatively) correct among mutants that are not absolutely
correct. Their strict differentiator sets are singletons. Whereas relative correct-
ness is based on comparing detector sets, subsumption is based on comparing
differentiator sets.
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mO
ml
m2
m3

: {s=pow(s,3)+4;} m4
: {s=pow(s,3)+5;} mb5
: {s=pow(s,3)+6;} m6
: {s=pow(s,3)+s+2;} | mT7

T {s=pow(s,3)FsF 1}

: {s=pow(s,3)+s;}

: {s=pow(s,3)+s*s-5*s+49;}
: {s=pow(s,3)+s*s-3*s+5;}

m8: {s=pow(s,3)+s*s-4%s48;}

m9: {s=2*pow(s,3)-6*s*s+11%*s-3;}
m10:{s=3*pow(s,3)-12%s*s422%s-9;}
mll:{s=4*pow(s,3)-18*s*s+33*s-15;}

Table 6: Mutants of Program P

m0
m3
m6
m9

{1,2,3}
{2,3}
{1}

{}

m1l
m4
m7
ml0

{1,2,3}
{1,3}
{3}

{

m2
mbd
ms
mll

{1,2,3}
{1,2}
{2}

{

mile————p-M9g-¢——pi 11

A

A

Cm

)

my
A

m ] ~—————p=11 () ~ P11

7 me m
ms3 m,

A

5

Table 7: Strict Differentiator Sets of Mutants

Figure 9: Ordering Mutants by Subsumption with respect to P
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6. Statistical Analysis

In [6], Gazzola et al present a comprehensive survey of program repair; this
survey highlights the predominance of search space size as the most critical
concern in program repair. At its core, program repair is the act of making a
program more-correct than it is |14, [7]; when the program has only one fault
(which is what many program repair experiments assume), then making the
program absolutely correct is indistinguisahble from making it relatively correct
(i.e. more-correct than it is). Most program repair methods rely on common
mutation operators to generate repair candidates, essentially the same kind of
mutation operators that are used in mutation experiments; on the other hand,
according to Proposition[6 the search for candidate repairs is based on the same
criterion (relative correctness) as the determination of subsumption relations.
This raises the following question:

e If mutants are generated by the same operators, and pairs of mutants are
compared using the same criterion (relative correctness < subsumption),
why is it so difficult to find program repairs (i.e. to reveal relative correct-
ness relationships) yet so easy to reveal subsumption relations, as most
subsumption graphs published in the literature are very dense (in terms of
number of arcs over number of nodes)? Is this perhaps the result of loss
of recall in program repair, or loss of precision in mtant subsumption?

We are not going to answer this question in this paper, as that requires an
empirical study well beyond the scope of this paper; but we will discuss the
mathematics that make it possible to conduct such an empirical study.

Relative correctness is determined by checking an inclusion relationship be-
tween detector sets, and subsumption is determined by checking an inclusion
relationship between differentiator sets. Hence both criteria can be modeled
statistically by considering the following question: If we choose K non-empty
subsets of a set of size T, what is the probability that any two subsets be in an
inclusion relationship? Once we estimate this probability, we can answer two
related questions, such as:

e What is the expected number of inclusion relationships between these K
subsets? This would be the expected number of arcs in a subsumption
graph of K nodes.

e What is the expected number of maximal subsets among the K subsets?
This would be the size of the minimal set of mutants, as determined by
subsumption.

These two questions are addressed in the next two subsections. It is important to
note that by modeling subsumption and relative correctness with set inclusion,
we are assuming that the differentiator sets / detector sets of two mutants with
respect to a specification are statistically independent. Our statistical analysis
is sound only to the extent that this asumption is valid.
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6.1. Graph Density

By abuse of notation, we use the same symbol to denote a set and its cardi-
nality. Given a set T"and K non-empty subsets thereof, we ponder the question:
what is the probability that any two subsets among K are in an inclusion rela-
tionship? Let D be the random variable that takes its values in subsets of T
The probability that D takes any particular value FE is given by the inverse of
the number of non-empty subsets of T

prob(D = E) =

2T —1°
The probability that D takes the value of a subset of size n is:

T
prob(|D| = n) = ng_2 .

Given a subset E of size n, the probability that another subset E’ is a subset
of E is:
2" —1
2T — 1’
where the numerator is the number of subsets of E and the denominator is the
total number of subsets of T'. The probability that two subsets F and E’ of T
are in a subset relation is:

prob(E' C E)
= {conditional probability}

S prob(E' C E| |E| = n) x prob(|E| = n)
= {substitutions}

]

n=132T—1 X —9T—7
= {simplification}

n_ T
E:—lﬁx( )

n

prob(E' C E) =

= {factorization}

T
ot xSz (1)

n

T T
_ﬁ X Zn:l n

= {highlighting the binomial formula}
T
(2T+1)2 x Y onx 1T ( >

n
r (T
—(2T+1)2><Zn_1( )

n
= {simplifying}
37 27
@T-12  (@T-1)*
For large (or even moderate) values of T', this can be approximated by (2)7.
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Under the assumption of statistical independence cited above, the expected
number of arcs in a subsumption graph of K nodes can be approximated by:

3

(Z)T x K(K —1).

6.2. Number of Maximal Nodes

Using the probability estimate p = %T, we can estimate the probability that
any subset of 7" is maximal: A given subset is maximal if and only if all (K —1)
other subsets are not supersets there of; hence,

3
prob(mazimality) = (1 — (Z)T)K_l.
Whence we derive the expected number of maximal mutants in a subsumption
(/ relative correctness) graph that stems from K mutants and a test suite of
size T

K (1= ()T,

7. Mutant Set Minimization

Mutant subsumption has been introduced as a way to minimize the cardi-
nality of a mutant sets, on the grounds that a subsumed mutant can be removed
from a mutant set without affecting its effectiveness. We argue that at its core,
mutant set minimization is an optimization problem; yet to the best of our un-
derstanding it has not been cast as such in the published literature. Indeed,
an optimization problem ought to be defined by two parameters, namely: The
objective function to minimize, and the constraint under which the objective
function is minimized. Whereas the objective function of mutant set minimiza-
tion is clear (we want to minimize the cardinality of the mutant set to reduce
the cost of mutation testing), the constraint under which this function is mini-
mized had not been defined explicitly in the literature. Of course, the implicit
assumption is that we are minimizing the cardinality of the mutant set while
preserving its effectiveness, but this raises the question: How do we define or
quantify the effectiveness of a mutant set? Once we have defined the effective-
ness of a mutant set, we must then ponder the question: does elimination of a
subsumed mutant preserve the effectiveness of a mutant set? We discuss these
questions in this section.

The effectiveness of an artifact must be defined with respect to the purpose
of the artifact, and must be assessed as function of its fitness for that purpose;
hence the first question we must address prior to defining the effectiveness of
a mutant set is: what is the purpose of a mutant set? If we consider that the
purpose of a set of mutants is to vet test suites, then the quality of a mutant
set can be assessed as a function of the quality of the test suites that it vets.
This, in turn, raises the question: What does it mean for a mutant set to vet a
test suite? We consider that a mutant set u vets a test suite T if and only if T'
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kills every mutant in p, and no subset of T' does (i.e. whenever we remove an
element of T', at least one mutant in g survives). This leaves two questions to
address:

e How do we define/ quantify the quality of a test suite?

e How do we aggregate the quality of all the test suites vetted by a mutant
set u into a synthetic quality metric of the whole set?

These two questions are the subject of the next two sections.

7.1. Test Suite Effectiveness

We consider a program P on state space S and we consider a subset T" of S.
If we view T as a test suite, then its effectiveness must be analyzed with respect
to two important attributes:

o First, whether we are testing P for total correctness or partial correctness.
e Second, the specification with respect to which correctness is expected.

To derive a quality metric of a test suite T', we first consider how to characterize
an ideal test suite 7', then we define a function that reflects how close we are
to the ideal case. An ideal test suite can be characterized by two logically
equivalent conditions: Test suite T is considered ideal to test program P for
(partial or total) correctness with respect to specification R if and only if:

e If program P passes all the tests in T, we can be sure that P is correct
with respect to R.

e If program P is not correct with respect to R then testing P on T will
expose its incorrectness (i.e. P will fail at least one test in T').

This condition can be formulated as:
A(R,P)CT,

where A(R, P) is a stand-in for Ap(R, P) or Arp(R, P), depending on whether
we are testing P for partial or total correctness.

Now that we know what characterizes an ideal test suite, we introduce a
measure that reflects to what extent a random (not necessarily ideal) test suite
differs from an ideal test suite. The elements that preclude a test suite T" from
being a superset of A(R, P) are the elements of A(R, P) that are outside T
the fewer such elements, the better the test suite. The set of these elements is
T N A(R, P); since we want a quantity that increases (rather than decreases)
with the quality of a test suite, we take the complement of this expression.
Whence the following definition.

Definition 10. Given a program P and a specification R on space S, the se-
mantic coverage of test suite T for program P with respect to specification R is
denoted by or,p(T) and defined by:

UR,P(T) =TUA(R,P).
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Measures of test suite effectiveness are usually referred to as coverage metrics,
and usually refer to syntactic attributes (such as statement coverage, path cov-
erage, condition coverage, etc); because the metric we introduce above refers
to the semantics of the program, not to its syntactic representation, we refer
to it as semantic covereage. A more meaningful distinction between traditional
syntactic measures of coverage and ours is that whereas measures of syntactic
coverage take numeric values (ranked by numeric inequality), our semantic cov-
erage takes its values in subsets of S, ranked by set inclusion. In [1] Brinksma et
al. introduce a semantic measure of test coverage that focuses, as we do, on the
function of the program (rather than its syntax), and assigns different weights
to different execution failures.

Definition represents, in effect, two distinct definitions, depending on
whether we are interested to test P for partial correctnes or total correctness:

o Partial Correctness. The semantic coverage of test suite T for program P
relative to partial correctness with respect to specification R is denoted
by 0, %(T) and defined by:

orp(T) =T UAp(R, P),

e Total Correctness. The semantic coverage of test suite T for program P
relative to total correctness with respect to specification R is denoted by
ag)C;D(T) and defined by:

oip(T) =T UAr(R, P),

To gain an intuitive feel for this formula, consider under what condition it is
minimal (the empty set) and under what condition it is maximal (set S in its
entirety).

e orp(T) = 0. The semantic coverage of a test T for program P with
respect to specification R is empty if and only if T is empty and the
complement of the detector set of P with respect to R is empty; in such
a case the detector set of P with respect to R is all of S. In other words,
even though any element of S exposes a failure of P with respect to R,
T does not reveal that P is incorrect since it is empty. This is clearly
characteristic of a useless test suite.

e orp(T) = S. If the union of two sets equals S, the complement of each
set is a subset of the other set. Whence: A(R, P) C T', which is precisely
how we characterize ideal test suites.

As a special case, if P is correct with respect to R, then, according to
Propositions[Iland 2] the semantic coverage of any test suite T' with respect
to P and R is S.

See Figure[I(} the semantic coverage of test suite T' for program P with respect
to specification R is the area colored (both shades of) green. The (partially
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Figure 10: Semantic Coverage of Test T for Program P with respect to R (shades of green)
6(P, My) 6(P, M) 0(P, M;) 5(P, My,)

2 G I I I AR
T ( )
7 ( )
T, ( )

N N

Figure 11: Test Suites {T;} Vetted by a Mutant Setp = {M;}

hidden) red rectangle represents the detector set of P with respect to R; the
dark green area represents the complement of this set, i.e. in fact all the test
data that need not be exercised; the light green area represents test suite T'.
The semantic coverage of T' is the union of the area that need not be tested
(dark green) with the area that is actually tested (light green). Test suite T is
as good as the red area is small.

7.2. Mutant Set Effectiveness

Now that we know how to quantify the quality of a test suite, we seek to
quantify the effectiveness of a mutant set; we argue that a set of mutants is as
good as the test suites that it vets; hence we resolve to quantify the effectiveness
of a mutant set by means of the semantic coverage of the test suites that it vets.
We denote by 6(u) the set of minimal test suites vetted by mutant set p (i.e.
test suites that kill all the mutants of p such that no subset thereof does):
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O(p) ={TVM € p:TN§P,M) # 0}

N

{TVT'CT,3IM € u:T' N6(P, M) = 0}.
Figure [T illustrates the relation of orthogonality between the differentiator
sets and test suites, and helps follow the subsequent discussions. We want to
characterize the effectiveness of mutant set p as an aggregate of the semantic
coverage of the elements of #(u). Since the test suites vetted by a mutant
set may have different levels of semantic coverage, we resolve to capture the
effectiveness of a mutant set by a lower bound and an upper bound, as follows:

o Assured Effectiveness, na(p). This is a lower bound of the semantic cov-
erage of all the test suites vetted by pu.

naw) = () orp(D).

Teb(p)

Any test suite that is vetted by u will have a semantic coverage at least
equal to (i.e. a superset of) 14 (u).

e Potential Effectiveness, np(p). This is an upper bound of the semantic
coverage of all the test suites vetted by u. It represents the potential
semantic coverage of a test suite that is vetted by p.

np(p) = U or,p(T).

TEe(1)

Any test suite that is vetted by p will have a semantic coverage at most
equal to (i.e. a subset of) na(u).

It stems from this definition that the semantic coverage of any test suite that is
vetted by u is bounded by the assured effectiveness and the potential effective-
ness of u.

VT € 0(u) : na(p) € o(T) C np(p).

The following Proposition stems readily from the definition of semantic coverage,
and gives a simpler expression to the assured effectiveness and the potential
effectiveness of a set of mutants.

Proposition 7. Given a program P on space S and a specification R on S, we
let p be a set of mutants of P, then the assured effectiveness of p can be written
as:

na(p) =AR,P)U () T.
Te0(p)

Also, the potential effectiveness of p can be written as:

ne(p) = AR P)U | T
Teb(n)
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This proposition stems readily from the fact that A(R, P) is independent of T
hence can be factored out of the effectiveness formulas. The following Proposi-
tion provides that removing a subsumed mutant in a mutant set preserves its
potential effectiveness.

Proposition 8. Let u be a set of mutants of program P and let y' be p' =
pU{M'} for some mutant M’ that is subsumed by some mutant M of p. Then
i and p' have the same potential effectiveness.

Proof. According to Proposition [T it suffices to prove that

Ur= U r

TEO(u) Teo(p')

Since p is a superset of u, 8(p') is a subset of 6(u) (since the test suites of 6(u')
have more test to kill). Therefore

U rc J T

Teo(n) Teb(n)

To prove the reverse inclusion, we consider an element t of UTeG(u) T'; there
exists a test suite 7' in 6(u) that contains ¢. This test suite has a non-empty
intersection with the detector sets of all elements of u, including with §(P, M);
since 6(P, M) C §(P,M’), T has a non-empty intersection with §(P, M), hence
with the detector sets of all the elements of p/. We infer that ¢ is an element of
UTEG(H’) T. qed

By virtue of this Proposition, we can infer that removing a subsumed mutant
from a mutant set preserves the potential effectiveness of a mutant set. We have
not proven that removing a subsumed mutant preserves the assured effectiveness
of a mutant set, nor have we found a counter-example; this matter is under
investigation.

Given that subsumption favors mutants whose detector sets are smallest
without being empty, we would expect that it lends a special importance to
mutants whose detector sets are singletons; this is confirmed by the following
Proposition.

Proposition 9. Let u be a set of mutants of a program P on space S and let
R be a specification on S. Let g be the set of mutants in p whose detector
set is a singleton and let Ty be the union of all the detector sets in po. Then
the semantic coverage of Ty with respect to P and R is a subset of the assured
effectiveness of u with respect to R.

Proof. The semantic coverage of Tj is, by definition, or, p(Ty) = To UA(R, P).
Any test suite that kills all the mutants in p kills all the mutants in pg, hence
is a superset of Ty, since for all M in pg, To N 6(P, M) # 0 is equivalent to
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To 2 6(P, M). Since Ty is a subset of any test suite that kills all the mutants in
14, it is necessarily a subset of their intersection. Whence we infer:

or,.p(To) C ﬂ TUA(R,P) =na(u).
Teo(p)

qed
We can see a confirmation of this Proposition in the example below, where T

is §(P, M0) U 8(P, M1) = {0,1}.

7.3. Summary Illustration

We let space S be defined by S = {0,1,2,3,4,5} and we consider a (fic-
titious) program P and specification R such that the detector set of P with
respect to R is:

A(R,P)=1{0,1,2,3}.
Since the detector set of this program is not empty, this program is incorrect;
testing it on any element of this set exposes its incorrectness. Also, we consider
the set of mutants p = {MO0, M1, M2, M3} whose differentiator sets with re-
spect to P are, respectively:

o(P,MO0) = {0}.

o(P,M1) = {1}.

o0(P,M2) = {2,4}.

o6(P,M3) ={3,5}.
The following test suites kill all the mutants in p, hence are elements of 0(u):

T1={0,1,2,3}.
T2 ={0,1,2,5}.
T3 ={0,1,4,3}.
T4 =1{0,1,4,5}.

The assured effectiveness of mutant set u is:
na(p) =T1NT2NT3NT4U{0,1,2,3}
={0,1}u{0,1,2,3}
={0,1,4,5}.
The potential effectiveness of mutant set y is:
np(p) =T1UT2UT3UT4U{0,1,2,3}
={0,1,2,3,4,5}U{0,1,2,3}
=S.
Interpretation: Though program P fails for four tests ({0,1,2,3}) a test suite
that is vetted by mutant set p is assured to reveal only two of these failures:
{0,1}. But mutant set p has the potential to reveal all the failures of program
P, if only we are lucky to pick the right test suite among those that are vetted
by w. If we select test suite T'1, then we reveal all the failures of program P; in
fact the semantic coverage of T'1 is all of S. But 74 is also vetted by u, yet it
reveals only two failures of P with respect to R: {0, 1}.

7.4. Mutant Set Minimization as Optimization Problem
We conclude this section by formulating the minimization of mutant sets
as an optimization problem, including an objective function and a constraint
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under which the objective function is minimized.
Mutant Set Minimization: Given a mutant set u, find a mutant set px that

e minimizes |y * |,
e under the constraints:

— px C p.
= np(px) = np(p).

8. Conclusion

8.1. Summary

The main contributions of this paper can be summarized as follows:

e Detector Sets and Correctness. The detector set of a program with respect
to a specification is the set of inputs that disprove the correctness of the
program with respect to the specification. Since there are two definitions
of correctness (partial, total), we have two definitions of detector sets:

Detector Set for Detector Set for
Partial Correctness Total Correctness
AP(Rvp): AT(R7P):

dom(R) N dom(P) N dom(RN P) | dom(R) N dom(RN P)

We use detector sets to characterize absolute correctness and relative cor-
rectness:

— Absolute Correctness: A program P is absolutely correct (in the sense
of partial correctness or total correctness) with respect to R if and
only if the correspnding detector set is empty:

P correct with respect to R: A(R, P) = 0.

— Relative Correctness. A program P’ is more-correct-than a program
P (in the sense of partial or total correctness) with respect to R if
and only if the detector set of P’ is a subset of the detector set of P:

P’ more-correct than P iff: A(R, P’) C A(R, P’).

| Correctness Type | Property | Condition
Absolute
Correctness P is correct wrt R A(R,P)=10
Relative P’ is more-correct than P
Correctness with respect to R A(R,P) C A(R,P)

o Differentiator Sets and Subsumption. The differentiator set of two pro-
gram P and @ is the set of inputs that expose their different behavior.
Taking into account the possibility that one or both programs may diverge,
we consider three possible definitions of differentiator sets:
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Basic Strict Broad

Differentiator Set | Differentiator Set Differentiator set
61(P7Q): 62(P7Q):

00 (P,Q) = dom(P) N dom(Q) | (dom(P) U dom(Q))

dom(P N Q) Ndom(P N Q) Ndom(P N Q)

We use detector sets to generalize the concept of mutant subsumption by
taking into account the possibility that the base program or its mutant
diverge for some input: Mutant M’ subsumes mutant M with respect to
base program P if and only if:

0 co(P,M") C6(P,M),
where §(P, M) stands in for the basic, strict or broad differentiator set of
P and M, depending on the interpretation we choose.

| Interpretation | M’ subsumes M with respect to P iff: |
Basic Subsumption | 0 C §o(P, M") C 6o(P, M)
Strict Subsumption | 0 C §1(P,M’) C 61 (P, M)
Broad Subsumption | 0 C §2(P, M") C 62(P, M)

Subsumption as Relative Correctness. Given that the detector set of par-
tial correctness has the same definition as the strict differentiator set, we
find that mutant M’ subsumes mutant M with respect to program P in
the sense of strict subsumption if and only if:

— Mutant M’ is not partially correct with respect to (the function of)
P.

— Mutant M’ is more-partially-correct than mutant M with respect to
(the function of) P,

Estimating Graph Density. Once we model mutant subsumption and rel-
ative correctness as an inclusion relationship between two sets, it becomes
possible to apply statistical methods to estimate the probability of oc-
currence of subsumption/ relative correctness relationships. We do so by
estimating the probability that two random subsets of a finite set are in an
inclusion relationship, and we use this probability to estimate the number
of arcs in a subsumption graph, and the number of maximal nodes in such
a graph.

Mutant Set Minimization as an Optimization Problem. We argue that
mutant set minimization is at its core an optimization problem and we
resolve to identify the measure of mutant set effectiveness that published
algorithms preserve as they remove subsumed mutants. We define the
effectiveness of a mutant set as an aggregate of the effectiveness of the
test suites that it vets, and we define the effectiveness of a test suite by
considering the extent to which fewer elements of the detector set fall
outside the test suite.

Because test suites vetted by a mutant set may have widely varying se-
mantic coverages, we aggregate the semantic coverages of vetted test suites
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by computing their lower bound (assured effectiveness) and their upper
bound (potential effectiveness). We prove that removing a subsumed mu-
tant from a mutant set preserves (does not reduce) its potential effective-
ness.

8.2. Assessment and Critique

Detector sets are an interesting concept because they link testing concerns
with program correctness concerns: whereas they are introduced to represent
test data that exposes the incorrectness of a program, they prove to be useful
to characterize absolute correctness and relative correctness.

Differentiator sets are useful in the study of mutant subsumption, as they
enable us to characterize mutant subsumption in uniform ways, across different
interpretations of execution outcomes. In particular, they enable us to rea-
son about subsumption while considering the possibility of program divergence;
indeed, divergence is a fact of life in mutation testing, as several mutation op-
erators are prone to generate divergent mutants by altering the guards that
programmers use to prevent divergence. By defining several versions of differ-
entiator sets, we generalize the concept of mutant subsumption without adding
much complexity.

Highlighting the analogy between (strict) subsumption and relative (partial)
correctness is interesting, becuse it opens the possibility of synergy between
two research directions, one focused primarily on program testing, the other
focused primarily on program correctness verification. This analogy stems from
the identity between the detector set of partial correctness of a program with
respect to a specification and the strict differentiator set of a program and its
mutant. The potential synergy that stems from this analogy remains to be
explored and exploited.

The statistical model that we have introduced to estimate the probability of
occurrence of subsumption / relative correctness relationships between mutants
of a base program provides a quantitative analysis of mutant subsumption and
relative correctness. It is valid to the extent that the detector sets/ differentiator
sets of different mutants of the same base program can be considered statistically
independent.

8.3. Threats to Validity

When we apply the statistical model of section [0l to published subsump-
tion graphs, we find that its estimates are lower than the actuals; one possible
explanation is that our assumption of statistical independence between the dif-
ferentiator sets of different mutants is unfounded.

Also, the formulas of mutant set effectiveness are based on a hierarchy of
modeling decisions pertaining to detector sets, semantic coverage, assured ef-
fectiveness, and potential effectiveness, each of which adds a layer of threats to
validity. While we did conduct some empirical experiments to validate the pro-
posed metrics (semantic coverage, assured effectiveness, potential effectiveness),
these are insufficient to draw any statistically significant conclusions.
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8.4. Research Prospects

Our agenda of future research includes the following venues:

e Explore potential synergies between research in mutant subsumption and
research in relative correctness, to share insights and advance the agenda
of each branch.

e Improve the precision of the statistical analysis of mutant subsumption, by
analyzing the possible correlations between differentiator sets of mutants
of the same base program.

e Conduct empirical validations of the measures of semantic coverage (of a
test suite) and assured effectiveness/ potential effectiveness of a mutant
set, using benchmark programs and common mutant generators.
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