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Abstract

Since their introduction more than four decades ago, invariant assertions have, justifiably,
dominated the analysis of while loops, and have been the focus of sustained research interest in
the seventies and eighties, and renewed interest in the last decade. In this paper, we tentatively
submit an alternative concept for the analysis of while loops, explore its attributes, and its
relationship to invariant assertions.
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1 Introduction

In [10], Hoare introduced the concept of an invariant assertion as a useful tool in the analysis of
while loops. The study of invariant assertions, and their use in the analysis of while loops, have
been the focus of active research in the seventies and eighties, and the subject of renewed interest in
the last few years [1, 3–5, 7, 8, 11, 13, 14, 20]. In this paper we introduce an alternative concept to the
analysis of while loops, namely the concept of invariant relation. Also, we explore the attributes of
invariant relations, and their relationship to invariant assertions and to loop semantics. Specifically,

• Whereas an invariant assertion is an assertion that holds after any number of iterations of
the loop (including zero iterations, i.e. at the precondition), an invariant relation is a relation
that holds between any two states, say s and s′, that are separated by an arbitrary number
of iterations (including zero).

• Whereas an invariant assertion is dependent not only on the loop, but also on the context
of the loop (as captured by its pre-condition and post-condition), an invariant relation is
intrinsic to the loop, and does not depend on where the loop is used.
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• Whereas invariant assertions are useful to prove the correctness of a loop with respect to a
specification in the form of a precondition/ postcondition pair, invariant relations are useful
to compute or approximate the function of a loop.

• Given an invariant relation and a precondition, we can generate an invariant assertion; on
the other hand, all invariant assertions can be derived from invariant relations.

• Given an invariant assertion, we can generate an invariant relation from it; but not all invariant
relations stem from invariant assertions.

• At the LIPAH laboratory, University of Tunis, we are developing / evolving an automated
tool that generates invariant relations of while loops written in C-like languages, using pre-
stored patterns that represent programming knowledge and domain knowledge. This tool
uses a divide-and-conquer discipline that keeps the generation effort virtually linear in the
size of the loop.

• We are also evolving and maintaining a tool, programmed in Mathematica ( c©Wolfram Re-
search), that uses the invariant relations generated above to compute or approximate the
function of the while loop.

In section 2 we briefly introduce the mathematical background that will be needed subsequently for
our discussions. In section 3 we introduce the concept of invariant relation and briefly present the
main results pertaining to the properties of invariant relations and their relationship to invariant
assertions [12]. In section 4 we discuss how invariant relations can be used to compute or approx-
imate loop functions, and in section 5 we illustrate our tool’s performance, and compare it with
other tools we know of (that generate invariant assertions). Finally in section 6 we summarize and
assess our main finding and identify future research directions.

2 Relational Mathematics

2.1 Elements of Relations

2.1.1 Definitions and Notations

We consider a set S defined by the values of some program variables, say x, y and z; we typically
denote elements of S by s, and we note that s has the form s = 〈x, y, z〉. We use the notation x(s),
y(s), z(s) to denote the x-component, y-component and z-component of s. We may sometimes use
x to refer to x(s) and x′ to refer to x(s′), when this raises no ambiguity. We refer to elements s of S

as program states and to S as the state space (or space, for short) of the program that manipulates
variables x, y and z. Given a program g on state space S, we use functions on S to capture the
function that the program defines from its initial states to its final states, and we use relations on
S to capture functional specifications that we may want the program to satisfy. To this effect, we
briefly introduce elements of relational mathematics. A relation on S is a subset of the cartesian
product S × S. Constant relations on some set S include the universal relation, denoted by L, the
identity relation, denoted by I, and the empty relation, denoted by ∅.
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2.1.2 Operations on Relations

Because relations are sets, we apply the usual set theoretic operations between relations: union (∪),
intersection (∩), complement (R), cartesian product (×). Operations on relations also include the
converse, denoted by R̂, and defined by R̂ = {(s, s′)|(s′, s) ∈ R}; and the product of relations R and
R′, denoted by R◦R′ (or RR′), and defined by R◦R′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R∧ (s′′, s′) ∈ R′}. We

admit without proof that R̂R′ = R̂′R̂ and that
̂̂
R = R. Given a predicate t, we denote by I(t) the

subset of the identity relation defined as I(t) = {(s, s′)|s′ = s∧ t(s)} and by T the relation defined
as T = {(s, s′)|t(s)}; by definition, we have I(t) = I ∩ T and T = I(t) ◦ L. The pre-restriction
(resp. post-restriction) of relation R to predicate t is the relation {(s, s ′)|t(s) ∧ (s, s′) ∈ R} (resp.
{(s, s′)|(s, s′) ∈ R ∧ t(s′)}). We admit without proof that the pre-restriction of a relation R to
predicate t can be written as I(t) ◦ R or T ∩ R, and the post-restriction of relation R to predicate
t can be written as R ◦ I(t) or R ∩ T̂ .

The domain of relation R is defined as dom(R) = {s|∃s′ : (s, s′) ∈ R}. The range of relation
R is denoted by rng(R) and defined as dom(R̂). We admit without proof that for a relation R,
RL = {(s, s′)|s ∈ dom(R)} and LR = {(s, s′)|s′ ∈ rng(R)}. The nucleus of relation R is the relation
denoted by µ(R) and defined as RR̂. The nth power of relation R, for natural number n, is denoted
by Rn and defined by: R0 = I, For n > 0, Rn = Rn−1 ◦ R. We define the transitive closure of
relation R as the relation denoted by R+ and defined by R+ = {(s, s′)|∃n > 0 : (s, s′) ∈ Rn}. We
define the reflexive transitive closure of relation R as the relation denoted by R∗ and defined by
R∗ = R+ ∪ I.

We apply the following conventions with regards to operator precedence: unary operators (com-
plement, inverse, closures) are applied first; they are followed by relational product, then intersec-
tion, then union.

2.1.3 Properties of Relations

We say that R is deterministic (or that it is a function) if and only if R̂R ⊆ I, and we say that
R is total if and only if I ⊆ RR̂, or equivalently, RL = L. A relation R is said to be rectangular
if and only if R = RLR. We are interested in two special types of rectangular relations: relations
satisfying RL = R are called vectors; relations satisfying LR = R are called invectors (inverse of a
vector). In set theoretic terms, a vector on set S has the form C ×S, and an invector has the form
S × C, for some subset C of S. Vector C × S can also be written as I(C) ◦ L.

A relation R is said to be reflexive if and only if I ⊆ R, transitive if and only if RR ⊆ R and
symmetric if and only if R = R̂. We admit without proof that the transitive closure of a relation R

is the smallest transitive superset of R; and that the reflexive transitive closure of relation R is the
smallest reflexive transitive superset of R. A relation R is said to be inductive if and only if it can
be written as R = A ∪ Â for some vector A; we leave it to the reader to check that if A is written
as {(s, s′)|α(s)}, then A ∪ Â can be written as {(s, s′)|α(s) ⇒ α(s′)}.

2.2 Refinement Ordering

We define an ordering relation on relational specifications under the name refinement ordering:

Definition 1 A relation R is said to refine a relation R′ if and only if

RL ∩ R′L ∩ (R ∪ R′) = R′.
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We denote this relation by R w R′ or R′ v R. In order to present an intuitive interpretation of
refinement, we introduce the definition of program function: Given a program g on space S, we let
G be the function defined as:

G = {(s, s′)| if g starts execution in state s then it terminates in state s′}.

We admit that, modulo traditional definitions of total correctness [6, 9, 17, 19], the following propo-
sitions hold:

• A program g is correct with respect to a specification R if and only if G w R.

• R w R′ implies that any program correct with respect to R is correct with respect to R ′.

In other words, R refines R′ if and only if R represents a stronger requirement than R′.

2.3 Lattice Properties

We admit without proof that the refinement relation is a partial ordering. In [2] Boudriga et al.
analyze the lattice properties of this ordering and find the following results:

• Any two relations R and R′ have a greatest lower bound, which we refer to as the meet,
denote by u, and define by: R u R′ = RL ∩ R′L ∩ (R ∪ R′).

• Two relations R and R′ have a least upper bound if and only if they satisfy the following
condition (which we refer to as the consistency condition): RL∩R ′L = (R∩R′)L. Under this
condition, their least upper bound is referred to as the join, denoted by t, and defined by:
RtR′ = RL∩R′∪R′L∩R∪(R∩R′). Intuitively, the join of R and R′, when it exists, behaves
like R outside the domain of R′, behaves like R′ outside the domain of R, and behaves like
the intersection of R and R′ on the intersection of their domain. The consistency condition
ensures that the domain of their intersection is identical to the intersection of their domains.

• Two relations R and R′ have a least upper bound if and only if they have an upper bound.

• The lattice of refinement admits a universal lower bound, which is the empty relation.

• The lattice of refinement admits no universal upper bound.

• Maximal elements of this lattice are total deterministic relations.

Figure 1 (a) shows the overall structure of the lattice of specifications.

3 Invariant Relations and Invariant Assertions

In this section, we introduce definitions for invariant relations and invariant assertions, using a
uniform relational notation. First, we present a theorem that defines the semantics of loops.

Theorem 1 Given a while statement of the form w = while t do b that terminates for all the
states in S. Then its function W is given by (where T is the vector defined by t and B is the
function of b):

W = (T ∩ B)∗ ∩ T̂ .

4



φ
   

   
    

```
```

```̀

�
�
�
�

@
@

@
@

@
@
@
@

�
�

�
�R R′

R u R′

R t R′

�
�
@
@
�
�
@
@
�
�
@
@
�
�
@
@
�
�
@
@

Total Functions

φ
   

   
    

```
```

```̀

�
�
@
@
�
�
@
@
�
�
@
@
�
�
@
@
�
�
@
@[w]

�
�
�
�
�
�
��

Y1
@
@ Y2

@
@ Y3

...

@
@ Yk

Y1 t Y2

Y1 t Y2 t Y3

Y1 t Y2 t Y3... t Yk

Total Functions

(a): Lattice Operations (b): Successive Approximations

Figure 1: Lattice Structure of Refinement

In this paper, we assume that loops terminate for all states in S, i.e. that their function is total;
in [18], we discuss why, in theory, this hypothesis does not affect the generality of our study. Also,
to illustrate our subsequent discussions, we use a simple running example, which is the following
while loop on natural variables n, f , k, such that 1 ≤ k ≤ n + 1:

w: while k!=n+1 {f=f*k; k=k+1}.

3.1 Invariant Assertions

Traditionally [10, 17], an invariant assertion α for the while loop w = while t do b with respect to
a precondition/ postcondition pair (p, q) is defined as a predicate on S that satisfies the following
conditions: p ⇒ α, {α ∧ t}b{α}, and α ∧ ¬t ⇒ q. For the sake of uniformity, we recast these
conditions in relational terms, representing the precondition p by the vector P = {(s, s ′)|p(s)},
the postcondition q by the vector Q = {(s, s′)|q(s)}, and the predicate α by the vector A =
{(s, s′)|α(s)}.

Definition 2 Given a while statement of the form, w = while t do b, an invariant assertion for
w with respect to precondition P and postcondition Q is a vector A on S that satisfies the following
conditions: P ⊆ A, A ∩ T ∩ B ⊆ Â, and A ∩ T ⊆ Q.

If we consider the sample loop introduced earlier, and take the precondition f = 1∧ k = 1 and the
postcondition f = n!, then we find that f = (k − 1)! is an invariant assertion for this program.

3.2 Invariant Relations

Definition 3 Given a while loop of the form w = while t do b on space S, and given a relation
R on S, we say that R is an invariant relation for w if and only if it is a reflexive and transitive
superset of (T ∩ B).
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To illustrate this concept, we consider again the loop of the running example, and we submit the
following relation:

R =

{
(s, s′)| f

(k − 1)!
=

f ′

(k′ − 1)!

}
.

This relation is clearly reflexive and transitive; we leave it to the reader to check that it is a superset
of (T ∩ B).

3.3 Comparative Analysis

The first question we ask is: can we derive an invariant assertion from an invariant relation?

Proposition 1 Let w be a while loop on space S and let R be an invariant relation for w. Then
A = R̂P is an invariant assertion for w with respect to the precondition P and the postcondition
Q = T ∩ R̂P .

Proof. According to Definition 2, we must prove three conditions:

• P ⊆ R̂P ,

• R̂P ∩ T ∩ B ⊆ ̂̂
RP,

• R̂P ∩ T ⊆ T ∩ R̂P .

The first condition stems readily from the reflexivity of R. The second condition is a result from
[12]. The third condition is a tautology. qed

As an illustration, we consider the invariant relation we had proposed earlier for the sample loop,
and we let P be the following vector, representing possible initial conditions of the loop:

P = {(s, s′)|f = 1 ∧ k = 1}.

The invariant assertion that we then obtain is the following:

A

= { Proposition 1, symmetry of R }
{(s, s′)| f

(k−1)! = f ′

(k′
−1)!} ◦ {(s, s′)|f = 1 ∧ k = 1}

= { relational product }
{(s, s′)|∃s′ : f

(k−1)! = f ′

(k′
−1)! ∧ f ′ = 1 ∧ k′ = 1}

= { simplification }
{(s, s′)| f

(k−1)! = 1},

which is the invariant assertion we had proposed earlier.
Because invariant relations depend exclusively on the loop whereas invariant assertions depend

on the context of the loop in addition to the loop (the context being defined by the precondition and
the postcondition), it is difficult to compare them meaningfully. Hence we consider a context-free
version of invariant assertions, which we introduce below.
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Definition 4 Given a while loop on space S of the form w = while t do b, and given a vector
U on S, we say that U is an inductive assertion for w if and only if U ∩ T ∩ B ⊂ Û .

An inductive assertion is an assertion that satisfies the second condition of invariant assertions, but
not the first nor the third (both of which refer to its context). The first result that we propose is
a generalization of Proposition 1: It provides that, given an invariant relation, we can generate a
wide range of inductive assertions from it.

Proposition 2 Let w be a while loop on space S and let R be an invariant relation for w and V

be an arbitrary vector on S. Then A = R̂V is an inductive assertion for w.

This Proposition is due to [12], where it is proved; we content ourselves here with illustrating it.
We take the invariant relation

R = {(s, s′)| f

(k − 1)!
=

f ′

(k′ − 1)!
},

and the following vectors:

V0 = {(s, s′)|f = 1 ∧ k = 1} V1 = {(s, s′)|f = 1 ∧ k = 2} V2 = {(s, s′)|f = 2 ∧ k = 3}
V3 = {(s, s′)|f = 6 ∧ k = 4} V4 = {(s, s′)|f = (k − 1)!} V5 = {(s, s′)| f

(k−1)! = 120}.

If we let A0, A1, ... A5 be the inductive assertions derived from the selected invariant relation by

applying vectors V0, V1, ... V5, we find

A0 = A1 = A2 = A3 = A4 = {(s, s′)|f = (k − 1)!}
A5 = {(s, s′)| f

(k−1)! = 120}.

The next question that we address is, naturally: can we generate an invariant relation from any
inductive assertion. The answer is given by the following proposition.

Proposition 3 Let A be an inductive assertion for the while loop w; then R = A∪Â is an invariant
relation for w.

Proof. By set theory, the condition T ∩ B ∩ A ⊆ Â is equivalent to T ∩ B ⊆ (A ∪ Â), i.e. R is a
superset of T ∩ B. By construction, (V ∪ V̂ ) is reflexive and transitive for any vector V . qed

We illustrate this proposition by means of a simple example, using the sample factorial loop. We
consider the following inductive assertion,

A = {(s, s′)|f = (k − 1)!},

and we apply the formula dictated by this Proposition:

R

= { Proposition 3 }
A ∪ Â

= { substitution, simplification }
{(s, s′)|f = (k − 1)! ⇒ f ′ = (k′ − 1)!}.
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Now that we know how to generate an inductive assertion from an invariant relation (Proposition
1) and an invariant relation from an inductive assertion (Proposition 3), can we infer that invariant
relations and inductive assertions are equally powerful? The answer is no, because the question we
need to pose instead is whether all invariant relations can be derived from inductive assertions, and
whether all inductive assertions can be derived from invariant relations. The following proposition
answers the second question.

Proposition 4 Let w be a while loop on space S and let A be an inductive assertion for w. Then
there exists an invariant relation R and a vector V such that A = R̂V .

The proof of this proposition is given in [12], where R is taken as A ∪ Â and V is taken as A. The
interest of this proposition is three-fold: First, it proves that by focusing on generating invariant
relations, we cover all possible inductive assertions; Second, it provides a structure for all inductive
assertions, as the inverse of an invariant relation composed with a vector; Third, it separates two
components of an inductive assertion, namely R̂, which depends exclusively on the loop, and V ,
which depends on the context (initialization) of the loop.

As to the question of whether any invariant relation can be derived from an inductive assertion,
we have no proposition to support the affirmative, and we have reason to believe it is not the case.
Consider that according to Proposition 3, the search for inductive assertions is amenable to the
search for invariant relations of a certain kind, namely relations that are inductive. Since not all
invariant relations are inductive, it is legitimate to infer that invariant relations are a more general
concept than inductive assertions.

4 Invariant Relations and Loop Analysis

We are developing and evolving an automated tool that generates invariant relations of while loops,
by analyzing their source code (currently in C++, and can trivially be extended to handle other
programming languages). Proposition 1 shows how, given an invariant relation and a precondition
to a loop, we can constructively generate a postcondition for the loop. While this is an interesting
result, it is not the only application of invariant relations, nor the most useful: the following
proposition, due to [18], shows that invariant relations can be used to compute or approximate the
function of a loop.

Proposition 5 Let w = while t do b be a while loop on space S; let R be an invariant relation

for w and let W be the function of w. Then W w R ∩ T̂ .

According to this proposition, we can transform an invariant relation of w into a lower bound (in
the refinement ordering) of its function W . Consider the lattice structure of refinement shown in
Figure 1. We find that maximal elements of this lattice are total deterministic relations; because by
hypothesis, W is total and deterministic, it is possible to compute it or approximate using nothing
but lower bounds. To this effect, we gather as many invariant relations as we can, from which we
generate lower bounds of the loop’s function. Then we take the join of all the lower bounds, which
we test for totality and determinacy; if it is total and deterministic, then it is the function of the
loop, if not it is the best approximation we can derive from the invariant relations at hand. As
an illustration, we consider the running sample loop, for which we know the following invariant
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relation: R = {(s, s′)| f
(k−1)! = f ′

(k′
−1)!}; from this, we derive the following lower bound

Y = {(s, s′)| f

(k − 1)!
=

f ′

(k′ − 1)!
∧ k′ = n′ + 1}.

This relation is total but is not deterministic, hence we seek another invariant relation for w, say
R = {(s, s′)|n = n′}, from which we derive the following lower bound:

Y ′ = {(s, s′)|n = n′ ∧ k′ = n′ + 1}.

Taking the join (in this case, the intersection) of these two lower bounds produces the following

(total, deterministic) relation:

{(s, s′)|f ′ = n! × f
(k−1)! ∧ n′ = n ∧ k′ = n + 1}.

If this loop is initialized by any segment such as: k=1; f=1; or k=2; f=1; or k=3; f=2; or any

segment whose postcondition is f
(k−1)! = 1∧ 1 ≤ k ≤ n+ 1, then the function of the initialized loop

is:

{(s, s′)|f ′ = n! ∧ k′ = n + 1 ∧ n′ = n}.

In the remainder of this section, we consider a number of sample loops; for each loop, we generate
the invariant relations derived by our tool, from which we compute the function of the loop (using
Proposition 5) and an invariant assertion (using Proposition 1). For the sake of comparison, we
show what other tools generate for the same loops, most notably: Aligator [15]; Daikon [7], and
LoopFrog [16]. The code is written in C++, with slight modifications: while C++ requires all
program constants to be assigned values, we merely declare them as constants, as we want to use
them as parameters of the loop function; also, we may sometimes put several statements on the
same line, to save space, even though C++ compilers do not allow that.

4.1 Sequential Loop Body

We consider the following loop, whose loop body consists of a sequence of assignment statements
to numeric variables; note that function f is not declared explicitly, as we do not need to know its
explicit expression to analyze the loop.

#include <iostream> #include <math.h> using namespace std; float f (float z);

int main () {const int e, g, cN; const float a, m, b, c, d; // constants

int h, i, j, k, l, n, p, xx, yy; float x, y, z, u, v, w, q, r, s, t; // vars

int aa[cN]; int ab[cN]; //arrays

while (k>=7) {j=j+aa[i]; i=i+n; l=l+ab[n]; n=n-k; k=k-7; yy=xx*yy; x=a+m*x;

y=a*pow(y,m); t=t+b*w; n=n+k+6; s=s+c*z; z=z+b; u=a*u+m; v=v-c; w=d*w; q=q+r;

r=f(r); h=h+g*p; p=p/e; i=i-n;}}

9



Our tool finds the following function for this loop (where k
7 designates the integer division of k by

7 and mod(k, 7) designates the remainder of the integer division of k by 7):

W =





(s, s′)|

d > 0 ∧ d 6= 1 ∧ a 6= 0 ∧ a 6= 1 ∧ e > 0 ∧ e 6= 1 ∧ m ≥ 2 ∧ k ≥ 0∧
k′ = mod(k, 7) ∧ aa′ = aa ∧ ab′ = ab ∧ i′ = i + k

7∧
r′ = f

k

7 (r) ∧ j′ = j + Σ
i−1+ k

7

H=i aa[H] ∧ z′ = z + bk
7∧

l′ = l + Σn

H=1+n− k

7

ab[H] ∧ n′ = n − k
7∧

y′ = ym
k
7 a

m

k
7 −1

m−1 ∧ p′ = e−
k

7 p ∧ h′ = h−eh+e(−1+e−
k
7 )gp

1−e
∧

q′ = q + Σn
H=1f

H(r) − Σ
n− k

7

H=1f
H(f

k

7 (r))∧
s′ = 1

2(2s − bck
7 + 2cz k

7 + bck
7

2
) ∧ t′ = t + bw d

k
7 −1
d−1 ∧

u′ = −m+a
k
7 (m+(a−1)u)

a−1 ∧ xx′ = xx ∧ yy′ = xx
k

7 yy∧
v′ = v − ck

7 ∧ w′ = d
k

7 w ∧ x′ = −a+m
k
7 (a+(m−1)x)
m−1





.

Execution of Aligator on this program is possible only after we delete the array statements, the
function calls, and the statements y=a*y**m and i=i-n; when we delete these statements, the
execution yields the following invariant assertion:

c×q+r×v = 5×r∧b×v+c×z = 5×b+c∧b×q+r = r×z∧2×s+(v−5)× (1+z) = b× (v−5).

Execution of Daikon was only possible after we instantiated all the constants, initialized all the
variables, and defined function f , which we did as follows:

const int e=2, g=1; cN=21; const float a=2., m=2., b=1., c=1., d=2.;

int i=1, n=20, j=0, k=150, p=20, h=0, l=0, xx=5, yy=2;

float x=0., y=2., z=1., v=5., w=1., s=0., t=0., u=0., q=0., r=1.;

int aa[cN] = {2,8,10,38,15,0,3,6,23,90,57,14,46,175,23,19,0,16,22,17,72};

int ab[cN] = {12,50,4,9,6,3,0,22,19,12,15,2,0,0,8,1,42,12,5,3,0};

float f (float z) {return z+1;};

Then, Daikon generates the following invariant assertion:

i + n = 21 ∧ 7 × i + k = 157 ∧ 7 × n + 10 = k ∧ z + v = 6 ∧w − t = 1 ∧ 2 × w = x + 2 ∧ 2 × t = x∧

z = r ∧ s = q ∧ x = u ∧ x%a = 0 ∧ yy%e = 0 ∧ e ∈ aa[].

As for LoopFrog, it produces the following assertion:

zz ≤ r ∧ k ≤ n ∧ r = z ∧ t = w ∧ u = x.

For the sake of comparison, we generate an invariant assertion from our invariant relation (the
same invariant relation we used to generate the loop function, above), using Proposition 1; for the
precondition, we take the initialization presented above, and we instantiate the constants to the
values presented above. We find the following invariant assertion (represented by a vector), where
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φ represents the fractional part of a number.

A =





(s, s′)|

i ≥ 1 ∧ n ≤ 20 ∧ φ(1.4427log(p)) = 0.321928∧
aa = [2, 8, 10, 38, 15, 0, 3, 6, 23, 90, 57, 14, 46, 175, 23, 19, 0, 16, 22, 17, 72]∧

ab = [12, 50, 4, 9, 6, 3, 0, 22, 19, 12, 15, 2, 0, 0, 8, 1, 42, 12, 5, 3, 0]∧
xx = 5 ∧ j + Σ21

H=iaa[H] = 656 ∧ l + Σn
H=1ab[H] = 225∧

q + Σn
H=1f

H(r) = Σ20
H=1f

H(1)∧
1.4427nlog(xx) + 1.4427log(yy) = 47.4386∧

i + n = 21 ∧ 7i + k = 157 ∧ 2i = x + 2 ∧ 2i = 1 + 1.4427log(y) ∧ i = z∧
2i = u + 2 ∧ i + v = 6 ∧ w = 0.52i ∧ f21−i(r) = f20(1)∧

i + b log(p)
log(2)c = 5 ∧ s − 0.5(z − 1)z = 0 ∧ t − w = −1 ∧ h + 2p = 40





.

4.2 Non Trivial Calculations

We consider the following loop, which manipulates numeric variables, and includes non trivial
numeric computations.

#include <iostream> #include <math.h> using namespace std; // header

int fact (int n); // body not shown; computes the factorial of n

int main () { const int cN, ca; int i, j, fb, nc, np; float x, x1, x2, x3;

while (j!=cN) {j=j+i; nc=fb; fb=np+nc; np=nc; x2=x2+pow((x-ca),i)/fact(i);

x3=x3+pow(x,i)/fact(i); x1=x1+pow(x,j)/fact(j); i=i+1; j=j-i;}}

Our method produces the following function for this loop:

W =





(s, s′)|

j ≥ cN ∧ x′ = x ∧ j′ = cN∧
x1′ = x1Γ(1+cN)Γ(1+j)−exΓ(1+j)Γ(1+cN,x)+exΓ(1+cN)Γ(1+j,x)

Γ(1+j)Γ(1+cN) ∧
x2′ = e−ca(ecax2Γ(i)Γ(i+j−cN)−exΓ(i+j−cN)Γ(i,x−ca)+exΓ(i)Γ(i+j−ca,x−ca)

Γ(i)Γ(i+j−cN) ∧
x3′ = x3Γ(i)Γ(i+j−cN)−exΓ(i+j−cN)Γ(i,x)+exΓ(i)Γ(i+j−cN,x)

Γ(i)Γ(i+j−cN) ∧
fb′ = np × Fib(j − cN) + fb × Fib(j + 1 − cN) ∧ i′ = i + j − cN∧

nc′ = np × Fib(j − cN − 1) + fb × Fib(j − cN)∧
np′ = np × Fib(j − cN − 1) + fb × Fib(j − cN)





,

where Γ is Euler’s Gamma function and Fib is Fibonacci’s function. In order to generate an
invariant assertion for this loop, we need to choose a vector P that represents initial conditions (as
per Proposition 1). We let P be defined by the following initial conditions: i = 1 ∧ j = 30 ∧ fb =
1 ∧ nc = 1 ∧ np = 1 ∧ x1 = x2 = x3 = 0. This yields the following invariant assertion:

A =

{
(s, s′)|

i ≥ 1 ∧ j ≤ 30 ∧ i + j = 31 ∧ x = 3 ∧ np = Fib(i) ∧ fb = Fib(i + 1)∧
x2 = 2.71828Γ(i,1)

Γ(i) − 1 ∧ x3 = 20.0855Γ(i,3)
Γ(i) ∧ x1 = 20.0855(1 − Γ(j+1,3)

Γ(j+1) )

}
.

Aligator could not process this loop; when we removed all the statements that it could not parse, it
produced the following assertion (where variable names indexed by zero designate the initial value
of the variable)

i2 + 2j + i0 = i + i20 + 2j0 ∧ x2 +
(x − ca)i0

ca + ca2 − 2ca × x + (x − 1)x
= x20 ∧ x3 +

xi0+1

x − 1
= x30.

11



Daikon did not object to any statement, and produced i + j − 31 = 0.

4.3 Non Trivial Control Structures

We consider the following loop, which has nested if then else statements in its loop body:

#include <iostream> using namespace std;

int main () {int x, z, t; float y;

while (x!=1) {if (x%4==0) {x=x/4; y=y*4; z=z+2; t=t-2;}

else {if (x%2==0) {x=x/2; y=y*2; z=z+1; t=t-1;}

else {x=x-1; y=y+y/x;}}}}

Our tool returns the following function for this loop:

W =

{
(s, s′)|x′ = 1 ∧ y′ = x × y ∧ z′ = z + b log(x)

log(2)
c ∧ t′ = t − b log(x)

log(2)
c
}

.

We apply Proposition 1 to the invariant relation generated for this loop, using the precondition P

defined by x = 30∧y = 2∧z = 0∧ t = 20, and we find the following invariant assertion (represented
by a vector):

A = {(s, s′)|xy = 60 ∧ z + blog2(x)c = 4 ∧ t − blog2(x)c = 16}.
Aligator and Daikon both find t + z = 20.

4.4 Non Integer Data

We consider the following loop, which performs a fixpoint computation on real numbers; the inter-
esting aspect of this loop is that it is not inductive, i.e. it is not maintaining any invariant property
as it converges towards the fixpoint. Hence its loop invariant gives no clue as to what it is doing.

#include <iostream> #include <math.h>

int main () {float x, y, z; while (fabs(y-x)!=0) {y=x; x=1+z/x;}}

Our algorithm finds a trivial invariant relation for this loop, which is R = L; by applying Proposition

5, we find the lower bound Y0 = T̂ . But this is not sufficient; in fact our algorithm also systematically
generates another lower bound, which does not depend on any invariant relation, to the effect that
if the loop body is executed at least once, then the range of the loop body’s function is necessarily
a superset of the range of W . The combination of these lower bounds yields:

W w {(s, s′)|x = y ∧ s′ = s}

∪{(s, s′)|x 6= y ∧ 1 + 4z ≥ 0 ∧ x′ =
1 +

√
1 + 4z

2
∧ y′ =

1 +
√

1 + 4z

2
∧ z′ = z}

∪{(s, s′)|x 6= y ∧ 1 + 4z ≥ 0 ∧ x′ =
1 −

√
1 + 4z

2
∧ y′ =

1 −
√

1 + 4z

2
∧ z′ = z}.

Indeed, this program has two fixpoints, and it converges to one or the other depending on the initial
value x. Note that because this relation is not deterministic (though it is total), we cannot say
that it equals W ; we can only say that it is refined by W . Aligator finds no loop invariant, since it
cannot identify a recurrence relation. Daikon, which merely inspects the execution of the code to
produce likely invariants, finds: x 6= y ∧ x > z ∧ y > z.
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4.5 Non Numeric Data

We consider the following program, which handles data of type list.

#include <iostream> #include <list> using namespace std; // header

int main () {list <int> l1, l2, l3; int x; // declarations

while (!l2.empty()) {l1.push_back(l2.front()); l3.push_front(l2.front());

x=x+l2.front(); l2.pop_front();}}

Our tool produces the following function for this loop:

W = {(s, s′)|l2′ = () ∧ l1′ = l1.l2 ∧ l3′ = l̂2.l3 ∧ x′ = x + Σ(l2)},

where the dot represents list concatenation, the hat represents list inversion, and Σ represents list
summation. Application of Proposition 1 with the precondition l1 = (12, 2, 12)∧l2 = (8, 10, 3, 6, 4)∧
l3 = (7, 8, 5, 9) ∧ x = 1 yields the following invariant assertion:

A = {(s, s′)|l1.l2 = (12, 2, 12, 8, 10, 3, 6, 4) ∧ x + Σ(l2) = 32 ∧ l̂2.l3 = (4, 6, 3, 10, 8, 7, 8, 5, 9)}.

Neither Aligator nor Daikon can process this program.

5 Generating Invariant Relations

While in the previous section we discussed how to use invariant relations, in this section we discuss
how to generate them. The detailed discussion of the algorithm is beyond the scope of this paper;
we will content ourselves with presenting the main premises and mathematical results behind its
design. As we recall, an invariant relation is a reflexive transitive superset of the function of the loop
body; because the interest of invariant relations is that they approximate the reflexive transitive
closure of (B ∩ T ), which is the smallest reflexive transitive superset of (B ∩ T ), it is easy to see
why smaller invariant relations are better. The following proposition gives us an idea how to obtain
small invariant relations.

Proposition 6 Let w be a while loop on space S and let R and R′ be invariant relations for w;
then R ∩ R′ is an invariant relation for w.

Proof. The intersection of two reflexive relations is reflexive; the intersection of two transitive
relations is transitive; and the intersection of two supersets of (B∩T ) is a superset of (B∩T ). qed

So that we can generate smaller invariant relations by taking the intersection of not-so-small in-
variant relations. As for how to generate elementary invariant relations, consider that in order to
find supersets of (B ∩ T ), it helps to write it as an intersection, such as:

(B ∩ T ) = B1 ∩ B2 ∩ B3 ∩ ... ∩ Bn.

Because then, any superset of B1 is a superset of (B ∩ T ); any superset of B1 ∩ B2 is a superset
of (B ∩ T ); any superset of B1 ∩ B2 ∩ B3 is a superset of (B ∩ T ); etc. This gives us a priceless
divide-and-conquer strategy: we can derive invariant relations for an arbitrarily large loop, once
the function of its loop body is written as an intersection, by looking at one term at a time, or two
at a time, or three at a time, etc. In practice, our algorithm proceeds as follows:

13



• The source code is mapped into a notation that rewrites the function of the loop body as
an intersection; when the loop body is merely a sequence of assignments, this can be done
by eliminating sequential dependencies. When the loop body has a more complex control
structures, we invoke a more general procedure, which we discuss subsequently.

• We deploy a pattern-matching algorithm that matches the terms of the intersection one a time,
then two at a time, then three at a time against pre-stored patterns (called the recognizers) for
which we store the corresponding invariant relation pattern. Whenever a match is successful,
we instantiate the invariant relation pattern to obtain an actual invariant relation. So far, we
have limited ourselves to looking at no more than three terms at a time in order to control
the combinatorics of the pattern-matching step; but as we consider more complex programs,
we are envisioning to increase the number of terms that need to be considered.

• We take the intersection of all the invariant relations that are generated, to obtain a smaller
invariant relation.

It is easy to write the function of the loop body as an intersection only if the loop body is made up

of a sequence of assignments. When the loop body contains more complex control structures, such

as nested if-then-else statements, then the outermost structure of the function of loop body is a

union. In that case, we apply the pattern matching algorithm discussed above to each term of the

union, to obtain an invariant relation as an intersection of larger invariant relations, of the form:

R =

(R1,1 ∩ R1,2 ∩ ...R1,n1)

∪(R2,1 ∩ R2,2 ∩ ...R2,n2)

∪...

∪(Rm,1 ∩ Rm,2 ∩ ...Rm,nm).

This relation is a superset of the function of the loop body, and it is reflexive; but it is not transitive,
as the union of transitive relations is not transitive. To derive an invariant relation from it, we
deploy a routine (written in Mathematica, c©Wolfram Research), to merge the terms of this union
into a single term, structured as an intersection. The key idea of the routine is to identify common
supersets of the terms of the union, and take their intersection. To explain the merger routine, we
consider two terms of the union, where each term is the intersection of two terms:

R = (R11 ∩ R12) ∪ (R21 ∩ R22).

If we find, for example, that (R21 ∩ R22) ⊆ R11 then we conclude that R11 is an invariant relation,
since it is reflexive and transitive (by construction), and it is a superset of each term of the union.
If, for example, we find also that (R11 ∩ R12) ⊆ R22 then we can infer (for the same reasons as
above) that R22 is an invariant relation. From which we conclude that R11 ∩ R22 is an invariant
relation. As an illustration, consider the following simple loop:

while (y!=0) {if (y%2==0) {y=y/2;x=2*x;} else {z=z+x;y=y-1;}}

As a reflexive transitive superset of the first branch (which we call B1), our tool finds R1 = R11∩R12,
where R11 = {(s, s′)|xy = x′y′} and R12 = {(s, s′)|z = z′}. As a reflexive transitive superset of the
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second branch (which we call B2), our tool finds R2 = R21 ∩R22, where R21 = {(s, s′)|x = x′} and
R22 = {(s, s′)|z+xy = z′+x′y′}. The relation R = R1∪R2 is a superset of (T∩B) (by construction);
and it is reflexive (as the union of reflexive relations); but it is not necessarily transitive (as the
union of transitive relations). However, we note that R22 is a superset of R1 (by inspection); on the
other hand, it is also a superset of R2 (any term of an intersection is a superset of the intersection).
Hence R22 is a superset of R1 ∪ R2; because by construction R1 ⊇ B1 and R2 ⊇ B2 we infer that
R22 is a superset of B1 ∪ B2, which is (T ∩ B). On the other hand, because it is generated by our
tool, R22 is by construction reflexive and transitive. As a reflexive transitive superset of (T ∩ B),
R22 is an invariant relation for the while loop.

6 Concluding Remarks

In this paper, we have briefly introduced the concept of invariant relation, and shown how it can
be used to analyze the functional properties of while loops. In particular, we have presented the
following results:

• Invariant relations can be used to compute or approximate the function of the loop.

• Invariant relations subsume invariant assertions, in the sense that any invariant assertions
can be derived from an invariant relation.

• Any invariant assertion can be structured as the combination of an invariant relation, which is
intrinsic to the loop, with the precondition of the loop, which reflects the loop’s initialization.

• Invariant relations can be derived from an analysis of the source code of the loop, using a
divide-and-conquer algorithm that enables us to handle large loops in nearly linear time.

Our tool for generating invariant relations is based on a pattern matching algorithm that matches
pre-stored code patterns, which we call recognizers, against a representation of the loop, and gen-
erates corresponding invariant relations whenever a match is successful. We believe that the task
of computing the function of a loop is essentially a mapping from a domain neutral notation,
namely the programming language, to a domain-specific notation, namely the application domain
of the program, with its attendant abstractions, notations, axiomatizations, etc. As long as we are
handling only numeric data types (integers, reals, etc), then the distinction between programming
notation and domain notation is moot, since numeric data types are native to all (C-like) program-
ming languages. But as soon as we need to analyze programs that handle non native data types,
we must be able to codify and integrate domain information in order for the tool to carry out a
meaningful analysis. In our approach, domain knowledge is codified in the recognizers, and in the
axiomatizations that we use after invariant relations are generated to compute the function of the
loop.

The examples that we have shown in section 4 show our tool in a favorable light by comparison
with other tools, but that is only because we chose the examples according to our current repository
of recognizers. In its current status, our prototype tool includes about 50 recognizers, and our
algorithm operates by syntactic matching. We envision three important extensions of it:

• Replace the current syntactic matching algorithm by a semantic matching algorithm; whereas
we currently match statements of the loop with recognizer patterns token by token, we want
to replace this by semantic match, which declares a match if the actual expression and the
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formal expression are identical, when instantiated by the same variable names. We envision
to use Mathematica for this purpose.

• Replace the current repository of recognizers by a set of more general recognizers, and increase
the scope of the repository in size (number of recognizers), as well as in genericity (range of
code patterns that semantically match each recognizer).

• Develop domain-specific sub-repositories, that can be deployed for code dealing with spe-
cific application domains, and would then use domain-specific abstractions, notations, and
axiomatizations.
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