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Colloid-polymer mixtures are an archetype for modeling phase transition processes, as they exhibit a
low-density gas phase, high-density crystalline phase and an intervening liquid phase. While their
equilibrium behavior has been studied extensively, the role of hydrodynamics in driving their phase
separation is not yet understood. We present a theoretical model that describes hydrodynamic
interactions in colloid-polymer mixtures in a microgravity environment. Our phase-field model
consists of the Cahn-Hilliard equation, which describes phase separation processes in
multicomponent mixtures, coupled with the Stokes equation for viscous fluid flow. We account for the
dependence of the suspension viscosity on the colloid concentration, and the so-called Korteweg
stresses that arise at the interfaces of colloidal phases. We process video microscopy images from
NASA'’s Binary Colloid Alloy Test (BCAT) experiments, which were performed on the International
Space Station. While terrestrial experiments would be dominated by gravitational forces and
buoyancy-driven flows, the microgravity environment of the BCAT experiments allows for the
visualization of phase separation by low interfacial tension, and thus enables a quantitative

comparison between experiment and our model predictions.

The phase transition behavior of colloidal suspensions exhibits striking
similarities to that of atomic-scale systems, providing insight into systems
that are otherwise difficult to observe'”. Because the colloid particles are
macroscopic, their behavior is readily observable via optical video micro-
scopy and small-angle light scattering’. In addition to scientific curiosity,
industrial applications of colloidal systems include materials engineering,
chemical processing and the manufacturing of pharmaceutical products.

A deeper understanding of the structure and dynamics of colloidal
suspensions and gels could also enable self-assembly of new materials’,
which are potentially useful in space’. Moreover, their structure and
dynamics in a microgravity environment could cause them to acquire new
microstructures and physical properties, and thus lead to the manufacturing
of new soft materials in low-Earth-orbit. On a scientific level, experiments in
space allow for the effects of gravitational forces and buoyancy-driven flows
to be suppressed, allowing for other relatively weak driving forces to be
probed. The knowledge gained from such experiments could have Earth-
bound applications, such as the stabilizing colloidal solutions, gels and
foams used by consumers’.

While the extensive literature on crystallization in colloidal suspen-
sions has been reviewed elsewhere®’, we here give a brief historical intro-
duction to the subject for the sake of completeness. Seminal computer

simulations® demonstrated that a system of hard spheres could exhibit a
fluid-to-crystal phase transition. This prediction was confirmed in
experiments’, where a progression from colloidal fluid, to fluid and crystal
phases in coexistence, to full crystallization was observed as the colloid
concentration was increased progressively. The phase transitions are now
understood to be driven by entropy alone. Those experiments also suggested
that, as the colloid concentration was increased progressively, the crystalline
phase transitioned to a glass-like state, wherein the colloidal particles were
jammed in a disordered fashion. This tantalizing discovery motivated
microgravity experiments conducted on the Space Shuttle (STS-73)"": while
a phase transition from liquid to crystal was observed, the glassy state was
not, indicating that it may be an artifact of gravitational effects. The crys-
talline state observed in those experiments has been shown to have the face-
centered cubic (fcc) geometry' ™",

While colloidal suspensions are interesting in their own right, the
addition of non-adsorbing polymer to a colloidal suspension makes the
phase behavior even richer”. This is due to the short-range attractive
depletion forces that arise when two solid bodies (e.g., colloids) are
immersed in a polymer solution. The substantial literature on colloid-
polymer suspensions has been reviewed elsewhere"', some of which we
highlight in what follows. Gast et al.”” and Lekkerkerker et al."® built on
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theories of the depletion interaction'”' in order to investigate the phase

behavior of colloid-polymer suspensions. They found that, for polymers
small relative to the colloid, a colloid-polymer mixture admits two equili-
brium phases, a fluid and a crystal, analogous to the colloid-only system
described in the preceding paragraph. Above a critical polymer size, the
system was found to admit three phases: a gas, a crystal, and an intermediate
liquid phase. These predictions were confirmed in terrestrial experiments'
on suspensions of polymethylmethacrylate (PMMA) spheres and the
polymer polystyrene in the solvent cis-decalin. The phase diagram deli-
neating the dependence of the equilibrium phase on colloid and polymer
concentrations has been determined experimentally”*”. Subsequent
experiments investigated the structure of the suspensions near the triple
point, a regime in which the gas, liquid, and crystalline phases coexist™. The
kinetics of phase separation was also studied experimentally***’, where it was
found that the three phases can emerge via distinct pathways depending on
the colloid volume fraction and polymer concentration. Non-equilibrium
aggregation of colloids and subsequent gelation can occur for sufficiently
strong depletion forces, as generated by increasing the polymer
concentration”*,

Despite the insights provided by the aforementioned experiments, it
has been recognized that gravitational forces can qualitatively affect phase
separation” and gel formation™ in colloid-polymer mixtures, as colloids
often sediment on a shorter timescale than that required to observe com-
plete phase separation. Indeed, terrestrial experiments are typically domi-
nated by gravitational forces and buoyancy-induced flows; these effects
obscure the details of dynamics driven by low interfacial tension, making
microgravity experiments valuable platforms for investigating colloidal
phase separation and testing theoretical models’. Experiments were thus
conducted in microgravity on the International Space Station™, where it was
observed that spinodal decomposition at early stages of the experiment
eventually gave way to fluid-driven coarsening at long timescales. Other
microgravity experiments’ revealed that, in certain parameter regimes, gas-
liquid phase separation could be arrested due to the formation of a crystal gel
consisting of crystalline strands that run through the entire sample.

A number of prior works have studied colloid-polymer mixtures using
simulations that neglect hydrodynamic effects, for example, using Brownian
dynamics™™, molecular dynamics®, Monte Carlo simulations”* and
dynamic density functional theory*®*, to name a few. Phenomenological
Cahn-Hilliard theories, also without hydrodynamics, have been used to
rationalize the kinetic pathways that drive phase separation in colloid-
polymer mixtures”, and to understand the role of an intermediate liquid
phase in unbinding a gas-solid interface*™. However, a discrepancy
between theory and experiment in a recent study of a two-dimensional
colloid-polymer mixture was attributed to hydrodynamic screening, the
effect of which was neglected in the theory*’. Moreover, lattice-Boltzmann
simulations of a colloid-polymer mixture showed that, while the final gel
structure is not affected by hydrodynamics, the speed of gelation is".
Simulations of colloidal suspensions (without polymer) using the “fluid
particle dynamics” method*, in which colloids are modeled as high-
viscosity fluids, also revealed the crucial role of hydrodynamics in mediating
phase separation™.

The goal of this paper is to construct and simulate a phase-field
model’™** that describes phase separation via spinodal decomposition in
colloid-polymer mixtures. Our model incorporates hydrodynamic effects
relevant to such mixtures, specifically, by accounting for the increase in
suspension viscosity with colloid concentration, and incorporating the so-
called Korteweg stresses that arise due to gradients in the colloid con-
centration. While Korteweg stresses have recently been incorporated in
volume-of-fluid simulations of colloidal dispersions™*, to our knowledge
they have not been applied to the study of colloid-polymer mixtures. We
compare our theoretical predictions with NASA’s Binary Colloid Alloy Test
(BCAT) experiments, which were conducted in microgravity on the
International Space Station. Previous analysis of spinodal decomposition in
these experiments was based primarily on data collected via small-angle
light scattering”. This analysis provides a good description of relatively

small-scale cluster growth, but is generally less useful for investigating the
large-scale structuring that occurs. We thus processed the video microscopy
images from the experiments, which are available on NASA’s Physical
Sciences Informatics (PSI) database, and used the images to quantitatively
characterize the coarsening process.

The paper is organized as follows. We first describe the algorithm we
used to process the video microscopy images from the BCAT experiments,
and to obtain a quantitative description of the coarsening rate. We then
construct the phase-field model and describe the qualitative features
observed in the simulations of the phase-field model. We then compare the
coarsening rates predicted by our model against those obtained in the BCAT
experiments, with and without the consideration of hydrodynamics. Con-
clusions and future directions are presented in the Discussion. The algo-
rithm used to solve the phase-field model is described in the Methods.

Results

Processing images from BCAT experiments

NASA’s PSI database contains plentiful information about the BCAT
experiments”. The four BCAT experiments conducted, BCAT-3,4,5,and 6,
each consist of ten samples at room temperature, T'= 295 K*°. In all of these
samples, the colloids are polymethyl-methacrylate (PMMA) spheres, the
solvent is a mixture of decalin and tetralin, and the polymer is
polystyrene™”” with a radius of gyration § =120 nm. Photographs of the
colloid-polymer mixtures were taken just after mixing and then approxi-
mately every thirty minutes after that. Each sample has different values for
the initial (homogenized) colloid volume fraction ¢y, polymer mass con-
centration p and colloid radius a. Several of the samples were aimed toward
studying other phenomena, such as seeded crystal growth, and contained
colloids of varying sizes; others had only colloids and no polymer. Those
samples are not considered herein, as we are interested in the phase behavior
of colloid-polymer suspensions. As stated in the BCAT-6 Final Summary
Report, available on the PSI database, no phase separation was observed in
the BCAT-6 samples, so we focused on BCAT-3, BCAT-4 and BCAT-5.
There were also a few samples that we excluded because the images were of
low quality and not amenable to analysis. The relevant samples for the
purposes of this paper are Samples 1, 2, 4, and 6 of BCAT-3, Samples 1-3 of
BCAT-4, and Samples 4-8 of BCAT-5. The dimensions of the visible
volume of the sample cells are 4 x 10 x 20 mm™. The relevant parameter
values for each of the samples are given in Table 1. The parameter ny in the
last column of the table is related to the polymer concentration and will be
defined in the next section. In this paper, we focus on BCAT-5, since for this
experiment the ratio of the polymer radius of gyration 8 to the colloid radius
a is less than unity, £ = §/a < 1, which is the regime in which the theory we
develop herein is expected to be valid'®.

Our first step was to process the raw images from NASA’s PSI database
and make them conducive to quantitative characterization. Figure 1 shows a
BCAT image before and after processing. We developed an algorithm in
MATLAB to first straighten each image and then crop it to eliminate the
dark background, the frame of the cell containing the sample, and the
sample number label, thus leaving only the sample domain. We then used
the software Image] to adjust the image’s brightness and contrast, subtract
the background, and then enhance the contrast again. Finally, the image was
smoothed and despeckled in Image], producing the finished product.
Additional implementation details are provided in [ref. 58, Chapter 4.2].
Figures 2, 3, 4, 5 and 6 show time series of the enhanced images corre-
sponding to BCAT-5 Samples 4 through 8. The corresponding images for
the BCAT-3 and BCAT-4 experiments are shown in Supplementary
Figs. 1-6.

As is evident from Figs. 2-6 and Supplementary Figs. 1-6, the samples
exhibit similar qualitative behavior: at early times, the initially-homogenized
mixture begins to separate into small domains of colloid-poor and colloid-
rich phases. Then, these domains grow in size over a timescale of hours. To
quantify the growth of the phase domains in time, we computed the char-
acteristic domain length A, for every image. Specifically, we computed the
spatial autocorrelation function C(x), then averaged C azimuthally using the
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Table 1| Table of the colloid volume fraction ¢y, colloid radius a and polymer mass concentration p, and other derived quantities
corresponding to the BCAT experiments

Sample Year bo a (nm) p (mg/mL) §=40/a (4/3)16°ng
BCAT-3 Sample 1 2006 0.2273 97 0.814 1.24 24.58
BCAT-3 Sample 2 2006 0.22 97 0.781 1.24 18.57
BCAT-3 Sample 4 2008 0.21 97 0.737 1.24 12.83
BCAT-3 Sample 6 2006 0.2112 97 0.742 1.24 13.40
BCAT-4 Sample 1 2008 0.2237 97 0.797 1.24 21.37
BCAT-4 Sample 2 2013 0.2173 97 0.770 1.24 16.80
BCAT-4 Sample 3 2013 0.2151 97 0.760 1.24 15.48
BCAT-5 Sample 4 2011 0.223 216 0.797 0.56 0.92
BCAT-5 Sample 5 2011 0.2173 216 0.770 0.56 0.85
BCAT-5 Sample 6 2009 0.29 229 0.72 0.52 1.23
BCAT-5 Sample 7 2010 0.24 229 0.88 0.52 0.99
BCAT-5 Sample 8 2010 0.35 229 0.55 0.52 1.81

The solvent composition is 47:53 decalin/tetralin for the BCAT-3 and BCAT-4 experiments, and 45:55 for the BCAT-5 experiments. The temperature is T =295 K and the polymer radius of gyration is
& =120 nm. The second column of the table shows the year the images were taken, as reported on the NASA PS| database. The Pls for the BCAT-3 experiments were D. Weitz, P. N. Pusey, A. G. Yodh, P. M.
Chaikin and W. B. Russel. The Pl for BCAT-4 Samples 1-3 and BCAT-5 Samples 4-5 was D. Weitz, and the co-l was P. Lu. The Pl for BCAT-5 Samples 6-8 was B. Frisken, and the co-l was A. Bailey.

Fig. 1 | Image processing algorithm applied to an
image of BCAT-3 Sample 1. The raw and enhanced
images are shown in (a, b), respectively. The raw
image in (a) was obtained from the NASA PSI
database. In (b), light (dark) areas indicate colloid-
rich (poor) regions. The height of the sample
domain is approximately 10 mm.

Fig. 2 | Time evolution of BCAT-5 Sample 4. The parameters are listed in Table 1. The time after mixing (in hours) is labeled at the top of each plot. The height of the sample
domains pictured in these images is approximately 10 mm.

Fig. 3 | Time evolution of BCAT-5 Sample 5. The parameters are listed in Table 1.
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Fig. 6 | Time evolution of BCAT-5 Sample 8. The parameters are listed in Table 1.
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Fig. 7 | Time evolution of the characteristic length scale A,(¢) for the samples in the
BCAT-5 experiments.

trapezoidal rule, which yields the 1D autocorrelation function C(r). The
characteristic length scale A, for a given image is found by selecting the first
maximum in the curve C(r); this value is a measure of the typical distance
between colloid-rich (or colloid-poor) domains. Examples of the 1D auto-
correlation function are shown in Supplementary Fig. 7. The resulting plots
of the time evolution of A,,() are shown for BCAT-5 in Fig. 7,and for BCAT-
3 and BCAT-4 in Supplementary Fig. 8.

We observe that A, increases more rapidly for BCAT-5 Samples 4 and 5
(blue and red points in Fig. 7) than for any of the BCAT-3 or BCAT-4
samples (Supplementary Fig. 8), despite the fact that the samples have
similar colloid volume fractions ¢ and polymer concentrations p (Table 1).
Domain growth proceeds roughly linearly in time in BCAT-5 Samples 4 and
5, similarly to the samples in BCAT-3 and BCAT-4. However, the curves for
BCAT-5 Samples 6, 7, and 8 (yellow, purple and green points in Fig. 7)
exhibit qualitatively different behavior from any of the others: the curves
increase roughly linearly at first but then abruptly flatten out and remain
roughly constant, indicating that the phase domain coarsening has stopped.
The Sample 7 curve (purple) is the first to begin flattening out after
approximately 13 h, followed by Samples 6 (yellow) and 8 (green), which
cease to exhibit linear growth at around the same time as each other
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(t=20h) These results are consistent with those of Sabin et al.”, who
reported the formation of crystallites having an arresting effect on the phase
separation in the same experiments. We note that the values A,(t) for BCAT-
5 Samples 6, 7 and 8 agree well with those reported in ref. 32, which serves as
a validation of our image processing algorithm.

Model development

We here develop a model for describing phase separation in colloid-polymer
mixtures. Our model consists of the Cahn-Hilliard equation, coupled with
the incompressible Stokes equation for low-Reynolds number flow”:

(0, +u-V)p=V-[[($)V(u(¢) — kg TL*Ap)], (1a)

T ks T1*
V- [n(@)(Vu+ (Vu)')] = Vp+ KTV - (V¢Vg), (1b)
V-u=0. (1¢)

The Cahn-Hilliard Eq. (1a) describes the dynamics of the colloid volume
fraction ¢(x, £). Here, I'(¢) is the mobility, y(¢) the colloid chemical potential,
kp Boltzmann’s constant, T the temperature and ¢ a free parameter
characterizing the width of the interface between phases. Equation (la) is
often referred to as “model H” in the literature®, where it is written in the form

(@ +u- V)9 = V- [r@Vv(%)],

@
where F = [[f(¢)+ ks TP |V|*] dx

is the free energy and f'(¢) = u(¢). We proceed by describing in turn the

forms of I'(¢) and p(¢p).

The mobility I'(¢) describes the extent to which the colloid particles are
free to move about. We use the expression given by van Megen etal.”’, which
was also used in a prior numerical study on crystallite growth in a colloidal
suspension®’:

6\
r =T|1——=] . 3
wo=r(1-5%) ®
The factor Iy is obtained from the Stokes-Einstein relation and has the value
Ty = 1/(6710a), where a is the colloid radius and #, the viscosity of the
solvent in the absence of colloids. The critical value ¢ = 0.57 is the value at
which the glass transition occurs, and the colloids are effectively no longer
able to move freely®’. Although negative values of ¢ are unphysical, Eq. (1) is
a phase-field model and so must be well-defined for all values of ¢. Thus, for
the purposes of our simulations, we define I' as

Iy if $<0,
) pe(9)  if0<$<0.01,
MD=1"T (¢ if0.01<p<057, @)
0 if $>0.57,

where pr{(¢) is a seventh-order polynomial spline interpolant for
0 < ¢ <0.01, defined in such a way that I has three continuous derivatives.
The cutoff value ¢ =0.01 was chosen so that the polynomial interpolant
would have coefficients of moderate size and also have minimal influence on
the simulations.

We define the colloid chemical potential y(¢) to be a piecewise-defined
function:

Pui(9) if¢<0.01,
_ ) up(¢)  if0.01<¢=<0.495,
Hp) = Pua(9)  if0.495<¢<0.54, )
s() if ¢>0.54.

Here, we follow Lekkerkerker et al."® and use the chemical potentials pr(¢) of
the colloid-fluid phase for ¢ < 0.495 and us(¢) of the colloid-crystal phase
for ¢>0.54. The values ¢; =0.494 and ¢, =0.545 are the coexistence
compositions in the absence of polymer; for values ¢; < ¢ < ¢,, the system is
in the fluid-solid coexistence regime®, in which we define u(¢) by a seventh-
order polynomial function p,,(¢) that connects the fluid and crystal
chemical potentials so that u(¢) is three-times differentiable. We also use a
fourth-order polynomial p,;(¢) to extend the definition of the chemical
potential to ¢ <0, while maintaining the requirement that y(¢) be three-
times differentiable. The chemical potentials pr(¢p) and pg(¢) are defined by
the expression

' d
U () = kBT( / ZXT@ dg + Zy(¢) — Vg ﬁ) +const,  (6)

where V. = 47a’/3 is the volume of a colloid particle. The expression for the
hard-sphere compressibility Zr(¢) for the colloid-fluid phase is taken from
Carnahan and Starling™, and Zg(¢) for colloid-crystal (hcp) phase is taken
from the molecular dynamics simulations of Speedy®:

L+¢+¢°—¢’
a-¢7

$/,.,—0.7080
— 0.5935 (YT

Zy(¢) =
(7)
ZS(¢) = )7

3
1=6/binax

where ¢ = +/27/6 is the maximum packing fraction. We note that,
while experiments have shown that the colloidal crystals in the fcc phase are
more prevalent after a long time* and in a microgravity environment'"",
simulations have shown the entropies of the fcc and hep phases to be very
similar’”"*’. We thus expect the difference between the two phases to have a
negligible influence on results presented herein.

The constant term in Eq. (6) is chosen to equate the fluid and solid
chemical potentials at the coexistence compositions in the absence of
polymer, ugp(¢1) = pis(¢,). Finally, the function a(¢) in Eq. (6) represents the
free volume of the polymer coils'’, given by

a(P)=01—¢) exp[—Ay — By2 — Cy3]7 where y = %,

8
A=EE+38+3), B=% 138 C=38. ®
The parameter n1 in Eq. (6) is the ratio of the polymer number density pN»/M,,
to the free volume a(¢), where N, is Avogadro’s number and
M, =132 x 10° g/mol is the polymer’s molecular weight. The polymer che-
mical potential, and thus the parameter g, is assumed constant because the
polymer diffuses quickly relative to the colloid™.

In the Stokes equations (1b), u = u(x, t) is the fluid velocity, p = p(x, t)
the pressure and #(¢) the dynamic viscosity. We note that the flow Reynolds
number Re = pU//y = O(10~°) using the approximate values p ~ 1 g/cm’
for the fluid density, 77 ~ 107> g/(cm - s) for the solvent’s dynamic viscosity,
£~ 0.1 cm for the characteristic domain size and U ~ 10~° cm/s for the flow
speed, the last two of which are estimated from Fig. 7. The influence of fluid
inertia is thus neglected in Eq. (1b). Our model accounts for the fact that the

viscosity of a colloidal suspension increases dramatically with ¢, in that we
adopt the expression”"
D
1 _ (22 ) 0
o (pv - ¢

which, for D, =1.15 and ¢, = 0.638, exhibits reasonably good agreement
with the low shear viscosities of colloidal suspensions measured in experi-
ments. We note that an alternative form for the mobility I'(¢) in Eq. (3)
would be I'(¢) x 1/5(¢) as follows from the Stokes-Einstein relation; while
such a relationship holds for relatively dilute suspensions (low ¢), it neglects
inter-particle caging effects that significantly reduce the colloids’ long-time
self-diffusivity in more concentrated suspensions. We thus opt to use
Egs. (3) and (9), which better match the experimental data across a wide
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range of ¢ values. As discussed in Section 3.1 of ref. 71, experimentally
measuring the mobility I'(¢) and viscosity #(¢) is quite difficult, particularly
as ¢ approaches the glass transition, so there is some uncertainty in the
functional forms in Egs. (3) and (9). However, we do not expect the precise
forms of the mobility and viscosity to qualitatively affect the results
presented herein.

The right-hand side of the Stokes equations contains the so-called
Korteweg stress, which describes the stress exerted by the colloid on the fluid
in a phase-field model™. It has been demonstrated that the form of the
Korteweg stress is consistent with measurements of the effective surface
tension in colloidal suspensions that undergo a fingering instability’”. For a
homogeneous binary fluid in which each component species has the same
molar mass, we would have x = 17%; however, in this work the solvent
(typically cis-decalin or tetralin) and solute (colloid particles) have different
molar masses, making it difficult to obtain a simple expression for the
stress’*”. We thus take « as a free parameter in our model.

We non-dimensionalize the governing equations (1) according to
x —x/L,t — t/7,u — u/Uand p — pL/(#,U). The length, time and velocity
scales are

¢ a Kk T2
L="rm "=orkT = 10
\/;7 ! V2Tokg T and U VL ’ (10)
respectively, where,
() o
Z/:Mk(igl;;) and ¢, = argmax {|¢'(§)] : ¢'(¢) <0} (11)
B

is the colloid concentration within the spinodal region for which the deri-
vative of the chemical potential is most negative. Defining the Peclet number

yas
_Ur_ox [ty
=1\

and rescaling the mobility, chemical potential and suspension viscosity as

(12)

T
r ¢ and il

- =, U— - — (13)

Iy’ [ (P 1 Mo

we obtain the dimensionless equations

(0, +yu-V)p = V- [($)V(u(¢) — AP)], (14a)

V- [n(¢)(Vu+ (Vu)')] = Vp+ V- (V¢Vg), (14b)

V-u=0. (14¢)

The dimensionless equations thus depend on the single free parameter y, as
defined in Eq. (12), which describes the relative importance of advective and
diffusive transport of the colloids.

Results of the numerical simulations

We proceed by showing the results of numerical simulations of the phase-
field model, Eq. (14), as conducted using the procedures described in the
Methods. The parameters correspond to the BCAT-5 experiments, as given
in Table 1. The parameter ng that determines the polymer chemical
potential is taken to be that corresponding to the average colloid volume
fraction:

; _pNAMP
K aldy) .

(15)

Supplementary Movie 1 shows a simulation with parameters corresponding
to BCAT-5 Sample 7, with hydrodynamics included (y = 130). Snapshots of

the simulation at the four (dimensionless) times ¢ = 0, 100, 500, and 5000 are
shown in Fig. 8, with the left column showing the colloid volume fraction
9, 1).

At t =0, the mixture is nearly homogeneous, ¢ ~ ¢, = 0.29, with only
small perturbations present. By ¢ = 100, small domains of low-¢ “gas” phase
(dark blue) have formed; higher-¢ (lighter green) regions also become
visible. The phase domains continue to grow, and the higher-¢ “liquid”
(orange) values take over, forming the background as the low-¢ “droplets”
merge to form larger gas domains. This liquid state, however, is temporary,
asitis only a metastable state. Eventually, crystallization sets in, and thereisa
three-phase coexistence of solid, liquid, and gas. By t = 5000, the solid phase
has mostly taken over, though small regions of the liquid phase remain. The
gas phase “droplets” continue to merge, and coarsening progresses at a
relatively slow pace. The simulation thus exhibits a three-phase coexistence
of solid, gas, and a metastable liquid phase, which has been predicted the-
oretically in prior work” and observed experimentally'™. As expected,
three-phase coexistence is observed even if hydrodynamic effects are
neglected (y =0), as shown in Fig. 9.

We observe that including hydrodynamic interactions between the
colloid particles and the surrounding fluid in the model seems to make the
phase domains rounder in shape. This effect is most visible in the simulation
of BCAT-5 Sample 4, which is shown in Fig. 10 and Supplementary Movie 2
for y=93. Especially at late times, the phase domains shown in the left
column of Fig. 10 appear more circular than those in Fig. 11, for which
hydrodynamic effects were not incorporated (y = 0). This phenomenon is
illustrated in Supplementary Movie 3, where the time-evolution of BCAT-5
Samples 4 and 7 with and without hydrodynamics are compared side-by-
side. Our finding is somewhat at odds with the results of ref. 76, who
conducted simulations of colloids interacting through a short-range Len-
nard-Jones potential by modeling colloids as fluid regions of relatively large
viscosity. They found that including hydrodynamic interactions resulted in
the formation of chainlike aggregates instead of circular clusters. We con-
jecture that this discrepancy with our results is due to differences in the
modeling framework; specifically, the Cahn-Hilliard equation is not solved
in ref. 76 so spinodal decomposition is not modeled explicitly, as it is in
Eq. (1a). We also note that the simulations including hydrodynamics in
ref. 76 exhibit elongated networks of colloid-rich regions instead of the
elongated colloid-poor regions observed in our simulations (Fig. 11). This
discrepancy may be due to differences in the initial colloid concentrations,
which is known to affect the coarsening kinetics and long-time phase
morphologies”.

The time evolution of the (dimensionless) fluid speed |yu| is shown in
the middle column of Figs. 8 and 10, and Supplementary Movies 1 and 2.
The initial gradients in ¢ are small, corresponding to low fluid speeds. The
fluid speeds increase quickly thereafter, and are largest for early times (i.e.,
t=100), slowing down at later times (i.e., t = 500 and 1000).

Another phenomenon we observed in our simulations with hydro-
dynamics (y > 0) is the formation of a quadrupole of vortices whenever two
phase domains merge, as illustrated in Fig. 12. Each vortex quadrupole
consists of two pairs of vortices: one pair is clockwise (blue) and the other
counter-clockwise (yellow), positioned across from each other. Such
structures are also visible in Figs. 8 and 10, specifically, at t = 100 when there
is a merger between colloid-poor domains. They are also visible in the right
columns of Supplementary Movies 1 and 2, which show vortex quadrupoles
popping in and out of existence as phase separation progresses. While the
fluid is relatively quiescent at late times when the coarsening slows, the
vortex quadrupoles continue to appear whenever there is a merger of
domains.

Comparison between theory and experiment

After carrying out the simulations with parameters corresponding to the
BCAT-5 samples, we proceeded to determine the time evolution of the
characteristic length scale A,(f) using the algorithm described earlier in order
to obtain a quantitative description of the coarsening process. To determine
an appropriate value for the free parameter ¢, we experimented by plugging
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Fig. 8 | Simulation results for BCAT-5 Sample 7,
with y = 130. Each row represents a different
(dimensionless) time ¢ as labeled, with the three
panels in each row corresponding to colloid volume
fraction ¢, fluid speed |yu|, and fluid vorticity yV x u.
In the bottom left panel, the liquid phase is visible as
orange regions within the solid (yellow) phase at the
final time of the simulation. In dimensional vari-
ables, the simulation domain length is roughly

10 mm and the final time of the simulation 295 h.
The maximum fluid speed in the color bar is roughly
0.1 um/s, and the maximum vorticity 2 x 10 *s™". A
video of this simulation is available in Supplemen-
tary Movie 1.

Colloid vol. fraction ¢

Fluid speed |yu|

Vorticity yV X u

in various values for € and plotting the corresponding curves (now in
dimensional units) for each € on the same axes as the experimental data, as
shown in Fig. 13. The dimensional length and time scales were obtained
using Eq. (10). We did this for each of the five BCAT-5 samples, selecting the
¢-value that best matched the experimental data. Then, we chose an ¢-value
about midway between the highest and lowest values across the five samples,
from which we obtained € =0.27 mm.

Fixing € =0.27 mm, we proceeded to plot the growth curves for the
BCAT-5 experiments in Fig. 14, comparing experimental data (triangles)
with simulation data (solid curves) both without (Fig. 14a) and with
(Fig. 14b) hydrodynamic interactions. We first consider the simulations
with hydrodynamics (Fig. 14b). While the experimental and simulation data
do not match perfectly, the values of A, predicted by the simulations are the
same order of magnitude as those in experiment. Moreover, the dependence
of the long-time length scale on sample parameters is mostly consistent
between experiment and simulation. Specifically, for the experimental data,
the largest A, values are attained by Sample 5 (red); then Sample 4 (blue);
then Sample 6 (yellow) and Sample 8 (green), which are nearly the same; and

then Sample 7 (purple). Sample 6 attains higher values overall than Sample
8, but its values eventually decrease, presumably due to artifacts arising from
noise in the experimental images, and finally settle at a lower value than
Sample 8. For the simulation data, the ordering is as follows: Sample 5 (red),
Sample 4 (blue), Sample 6 (yellow), Sample 7 (purple), and finally Sample 8
(green), which is mostly consistent with the ordering of the experimental
data. We note that we only had the freedom to adjust the single free para-
meter € to obtain fits across all times ¢ and five BCAT-5 samples.

In the absence of hydrodynamic effects, y = 0 (Fig. 14a), the simulation
curves for the five samples are clustered closer together than in Fig. 14b; the
values of A, for Samples 4, 5 and 6 at the latest time considered are quite
similar to each other, while Sample 7 attains significantly lower values and
Sample 8 attains the lowest of all. Inclusion of hydrodynamic interactions
appears to cause the A,-curves to separate from each other, making the
different sample parameters more distinguishable from each other, as is the
case in the experiments.

We also note that the early-time growth rates of the simulation curves
in Fig. 14b are more similar to the experimental data than those in Fig. 14a,
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Fig. 9 | Simulation results for BCAT-5 Sample 7, without hydrodynamic effects
(y = 0). Each panel represents the colloid volume fraction ¢ at a different (dimen-
sionless) time #, as labeled. In dimensional variables, the simulation domain length is
roughly 10 mm and the final time of the simulation 295 h. The bottom left panel of
Supplementary Movie 3 shows a video of this simulation.

indicating that hydrodynamics affects the early-time behavior of the system.
Specifically, the y > 0 curve (Fig. 14b) for each sample exhibits faster growth
than its y =0 counterpart (Fig. 14a) at early times. Both curves begin to
flatten out as time progresses, indicating a slowing down of the phase
separation. This slowing starts earlier with hydrodynamics than without.
These results suggest that the inclusion of hydrodynamic effects initially
speeds up the phase separation process, but eventually slows it down at later
times. Specifically, the increase in suspension viscosity, Eq. (9), and decrease
in mobility, Eq. (3), as the colloid volume fraction increases may lead to
phase separation being hindered or even arrested in a colloid-polymer
suspension. This mechanism would be in addition to the one identified by
Sabin et al.”>, who analyzed microgravity experiments of colloid-polymer
suspensions. They found that phase separation was arrested due to the
emergence of a system-spanning crystal gel, an effect that cannot be cap-
tured by our model because it does not include gelation. For BCAT-5
Samples 4 and 5 (blue and red curves, respectively, in Fig. 14b), our theory
predicts a slowdown in coarsening that does not occur over the timescale
probed in the experiment. We conjecture that this discrepancy indicates that
our model for the mobility I'(¢) in Eq. (3) overpredicts the degree to which
colloidal diffusion is hindered in these samples, which have lower values of
colloid volume fraction than the others shown in Fig. 14b.

Discussion

We have constructed and analyzed a phase-field model, Eq. (1), for colloid-
polymer mixtures in which hydrodynamic interactions are considered
explicitly. The colloid volume fraction ¢ evolves according to the Cahn-
Hilliard equation (1a) with a concentration-dependent mobility I'(¢), and
the fluid velocity u is governed by the incompressible Stokes equations (1b)-
(1c) with a concentration-dependent viscosity #(¢). The fluid is forced by
gradients in the colloid concentration via the Korteweg stress, which models
the interfacial tension between colloidal phases. We have also processed
video microscopy images from NASA’s microgravity BCAT experiments,
extracted the coarsening rates as a function of time, and quantitatively
compared them with the predictions of our model.

Our simulation results provided some insight into the role of hydro-
dynamic effects on phase separation in colloid-polymer suspensions. Spe-
cifically, we observed that the phase domain structures take on a more
stringy appearance when hydrodynamic interactions are neglected, as is
evident in Supplementary Movie 3 and by comparing Figs. 10 and 11. We
also found that the merger of colloid-poor domains is associated with a
vortex quadrupole in the fluid (Fig. 12). While the fluid speeds are largest at
early times in the simulations (Figs. 8 and 10), corresponding to relatively
rapid demixing, the vortex quadrupoles appear throughout the coarsening
process even at late times, whenever there is a domain merger (Supple-
mentary Movies 1 and 2). Including hydrodynamic interactions (y>0)
improves the comparison between theory and experiment, as is evident by
comparing Fig. 14a, b; specifically, hydrodynamic effects tend to accelerate
coarsening at the intermediate timescale of approximately 20 h for the
parameters corresponding to the BCAT-5 experiments. The fact that the
experiments were conducted in microgravity made such hydrodynamic
effects visible, as sedimentation was avoided and these intermediate time-
scales could be probed.

Our model makes a number of assumptions for the sake of simplicity.
In particular, the phase-field model treats the colloid particles as a con-
tinuum field. As a consequence, we cannot treat directly the influence of
colloid particles on the fluid, and instead force the fluid motion through the
Korteweg stress. Moreover, our simulations are in a periodic domain and
thus neglect boundary effects, which are expected to play a role when the
colloids approach the walls of the glass cuvettes in the BCAT experiments.
We also assume that the polymer chemical potential is constant, and neglect
the influence of inhomogeneities in the polymer concentration. Further-
more, our model neglects the viscoelastic character of colloid-polymer
suspensions, as arise when the system approaches gel-like states like those
seen at the late stages of BCAT-5 Samples 6-8. It is known that viscoelasticity
can qualitatively affect the phase separation process by leading to clustering
and the formation of slowly-evolving transient networks”””. In spite of these
significant simplifications, our simulation results in Fig. 14 show that the
order of magnitude predictions for the coarsening rate are correct.

Experiments have suggested that polymer redistribution is a critical
ingredient driving colloidal crystallization®. In the future, we could improve
the model by removing our assumption that the polymer chemical potential
is constant, and instead evolve the polymer concentration in time. To that
end, generalized free-volume theories of the form described in ref. 81 could
be used. These theories have the advantage that they can be extended to the
regime £ > 1, which is beyond the regime of validity of the theory used in our
paper (which is based on ref. 16) but relevant to the BCAT-3 and BCAT-4
experiments (Supplementary Information). More sophisticated models can
be developed by going beyond free-volume theories, for instance by using
the so-called polymer reference interaction site model (PRISM)*>*, which
exhibits better agreement with experiment in certain regimes*’. Another
approach would be to couple the polymer concentration field to the colloid
concentration using Onsager’s variational principle, following the approach
in ref. 85. A more detailed treatment of the hydrodynamic interactions
between colloids, for instance by accounting for how short-range lubrication
forces affect the lifetime of colloidal bonds®, could also improve the
agreement between theory and experiment. Moreover, it would be worth-
while to perform the simulations in three dimensions; while the simulations
herein were performed in two dimensions for the sake of computational
tractability, the spatial dimensionality is known to affect the rate at which
coarsening proceeds”’.

The simulation platform detailed herein could also be extended to
model more complicated colloidal systems such as suspensions of active
colloids®, which have attracted recent interest due to their ability to form
new materials and mimic living matter®. Much like the colloid-polymer
systems described herein, such systems would also benefit from investiga-
tions in microgravity environments, as the destructive effects of gravita-
tional forces, buoyancy-driven flows and hydrostatic pressure would be
eliminated’. External forces could also be readily added to our model Eq. (1),
which would allow us to probe the possibility of assembling and holding
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Fig. 10 | Simulation results for BCAT-5 Sample 4,
with y = 93. In dimensional variables, the simula-
tion domain length is roughly 14 mm and the final
time of the simulation 1100 h. The maximum fluid
speed in the color bar is roughly 0.06 um/s, and the
maximum vorticity 3 x 10*s™". A video of this
simulation is available in Supplementary Movie 2.
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colloidal structures in desired configurations. The associated protocols
could potentially be realized in microgravity experiments, which could pave
the way for building mobile and reconfigurable colloidal machines that
manipulate their environment in controlled ways’.

Methods

We solve the governing equations (14) numerically with doubly periodic
boundary conditions on a square domain of size 47P x 47P, where P = 20
unless otherwise stated. A linear stability analysis of Eq. (14) around the
homogeneous state ¢ = ¢, in the spinodal region and u = 0 yields the upper
bound |k| = 1/+/2 for the wavenumber of maximum growth, which cor-
responds to a wavevector k= (k,, k,) with components k. =k, =1/2, for
example. Our choice of simulation domain thus admits P such wavelengths
along each direction. To mimic the initially homogenized state of the sus-
pension immediately after mixing, we generate a small-amplitude field of
Gaussian random perturbations <7>(x) with zero mean, smooth it, and add to
it the homogeneous volume fraction ¢y, thus obtaining the initial condition
¢(x,0) = ¢, + P(x). When ¢ is in the spinodal region, 4/'(¢,) <0, these
small-amplitude perturbations will grow in time and spinodal decomposi-
tion will take place.

We employ a pseudospectral method with 512 points in each direction.
We proceed by describing, in turn, the time-stepping scheme for solving the
Cahn-Hilliard equation (14a) and the method for solving the variable-
viscosity Stokes Egs (14b, c).

Semi-implicit time-stepping scheme
The first-order forward Euler time-stepping method for Eq. (14a), written in
Fourier space, is

(}n+1 _ ‘Z)n _ yAtJ:[u" . V¢n]

» 16

+arik- F [0 F [ik(F[u@n)] + kPe")] | (o
where the hats are used to denote Fourier-transformed variables, (;5 = Fl¢],
g}n = ¢(k, nAt) and At is the time step. Equation (16) suffers from a severe
time-stepping restriction, At ~ O((Ax)*). To avoid this problem, Zhu et al.”
proposed a semi-implicit time-stepping scheme. Specifically, they add and
subtract a constant A from the mobility,

I(¢) = (I(¢) — A) + A, (17)
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Fig. 13 | Dominant length scale A, vs. ¢ for BCAT-5 Sample 7, obtained from
numerical simulations using y = 130, plotted with the experimental data (blue
points). The different colors correspond to different choices of £ (in mm) used in
computing the length and time scales L and 7 defined in Eq. (10).
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Fig. 11 | Simulation results for BCAT-5 Sample 4, without hydrodynamic effects
(y = 0). In dimensional variables, the simulation domain length is roughly 14 mm
and the final time of the simulation 1100 h. The top left panel of Supplementary
Movie 3 shows a video of this simulation.
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Fig. 12 | Illustration of the vortex quadrupole that arises when phase

domains merge. a Plot of ¢ for a BCAT-5 Sample 7 simulation using y = 130 and
P =10 at (dimensionless) time ¢ = 527. b Zoom-in of the fluid vorticity yV x u in the
region enclosed by the red box in (a).

which results in a linear term — AA’ on the right-hand side of Eq. (14a).
This numerically stiff term is treated implicitly, while all of the other
(nonlinear) terms in the equation are treated explicitly as in Eq. (16). While
Zhu et al. suggested A = (max(F(¢)) + min(l"((p))) /2, we found by
experimenting with the numerical scheme that A = 1 is a suitable choice for
the mobility defined in Eq. (4). Rearranging the resulting equation, we
obtain the time-stepping scheme

~n+1

¢ = ¢ + i (—yF[w - V']

+ik- }'[F(qﬁ")]-"l [ik(]—'[,u(qﬁ")] n |k|2¢”)ﬂ ) (%)

Solving the variable-viscosity Stokes equations

We adapt the procedure of Tree et al.”" to solve the variable-viscosity Stokes
equations (14b, c) at every time step. Dropping the superscripts on ¢ for the
sake of clarity, we write

n(¢) =" +7(¢), where #* = maxn(¢), (19)

and define the tensors

T=Vu+(Vu)' and o= V¢V¢ (20)
to rewrite Eq. (14b) in the form
nAu=Vp—V-[fr] +V 0. (21)

Taking the Fourier transform of Eq. (21) and using the incompressibility
condition, Eq. (14c), we obtain”

1 <, N
n* k|

where I is the identity matrix. Defining the scalar variable i through the
equation

) - (-l + 710D,

(22)

=

o ikt N
0= mu where k+ = (k,, —k,), (23)
and using the fact that I — kk"/|k|* = k*k""/|k|*, we obtain a linear equation
for ii:
S |1k|3 k- [k (=7 [77] + Flo])]. (24)

Our approach differs from that of ref. 91 in that the scalar Eq. (24) is solved,
rather than the vector Eq. (22), which reduces the problem’s
computational cost.
Note that Eq. (24) can be written as
u = H(u), (25)
where u = F'[ii] and H is a linear operator. It is not feasible to solve
Eq. (25) explicitly using Gaussian elimination, for example, due to the fact
that u contains 512 unknowns. For this reason, we solve the linear system
using a combination of Picard iteration”” and Anderson mixing” ™, iterative
methods that allow us to approximate the solution to Eq. (25) with a desired
accuracy. We briefly describe how to get from step k to k + 1 of the iteration:
suppose for now that k > J, a predetermined number, and that we have the
J+ 1 approximations (or “iterates”) ty_j, ..., ux. The Anderson mixing
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Fig. 14 | Comparison between experiment and theory. Dominant length scale A,(t)
in BCAT-5 Samples 4, 5, 6, 7 and 8, obtained from experimental data (triangles) and
simulations (solid curves) run without accounting for hydrodynamic interactions
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(y =0, a) and with hydrodynamic interactions (b). In the latter, the values of y are 93
(Sample 4), 91 (Sample 5), 100 (Sample 6), 130 (Sample 7) and 202 (Sample 8). The
value €= 0.27 mm is fixed.

scheme reads

Uy = H(agy,) for kxJ,
(26)

J
v, = (k)
where ., = u; +j_§lcj (uk_j uk>.

The constants ¢¥) = (c(lk), R c;k) ) are obtained by solving the linear
system

U® k) — V(k), (27)
where U® € R*/ and v® € R/ have the elements
(k) __ (k) (k) 4(k) (k)
Up = (P —d P - dp ), o)
W= (0, ), 1sie,
and
dP = Hw) —w, k-J<I<k, (29)

{f, &) = | flx)g(x) dx being the standard inner product. The iteration,
Eq. (26), continues until the error residual Hd;{k) H = <d(kk), d(kk)> drops

below the error tolerance 10™°.

We proceed by describing how we obtain the first J + 1 iterates ug, u;,
..., u. Starting with u, for the first time step of the simulation, we use the
solution to the constant-viscosity Stokes equations, which have the analy-
tical solution in Fourier space

—_— 1 _q l . 1 .
ity = 17(¢0)|k|31k (ik - Flo)),

(30)

and let uy = F~'[i1,]. For every time step after the first, we let u, be the
solution to the problem Eq. (25) at the previous timestep. Given ug, we
obtain the ] iterates u,, ..., u; using Picard iteration with relaxation:

U = wH(w) + (1 — w)uy,

0<k<J, (1)

where we choose the relaxation parameter to be w = 0.1. This completely
defines an iterative scheme for solving Eq. (25).

While the iterative scheme, Eq. (26), typically converges faster for larger
values of ], the computational cost of performing a single iteration clearly
increases with J. To handle this tradeoff in our numerical simulations, we
found that J = 2 was sufficient for early times f, when the constant viscosity
solution u, is a good approximation to the actual solution to Eq. (25). As
coarsening progresses and # is no longer nearly constant, our algorithm
automatically increases ] if convergence is not reached within 40 + 10(J — 2)
iterations, where we count both Picard iterations, Eq. (31), and Anderson
mixing ones, Eq. (26).

Data availability
The datasets generated and analyzed during the current study are available
from the corresponding author upon reasonable request.

Code availability
The code written and used during the current study is available from the
corresponding author upon reasonable request.
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DETAILS OF BCAT-3 AND BCAT-4 EXPERIMENTS

We here collect the processed images for the BCAT-3 and BCAT-4 experiments. The parameter values
are given in Table I of the Main Text. Supplementary Figures 1-4 show the time evolution of the four
BCAT-3 samples, and Supplementary Figs. 5-6 shows that for two of the BCAT-4 samples. We did not
include a figure for BCAT-4 Sample 1, for which only a few images were available, likely because the camera
malfunctioned during the experiment. ~

Examples of the azimuthally-averaged autocorrelation function C(r), as defined in the “Results” section
of the Main Text, are shown in Supplementary Fig. 7 for BCAT-3 Sample 1. The time evolution of the
characteristic length scale A, (¢) is shown in Supplementary Fig. 8. For BCAT-3 (Supplementary Fig. 8(a)),
it appears that higher colloid volume fractions ¢¢ and polymer concentrations p are correlated with faster
growth of the phase domains. Note that the colloid radius a and polymer radius of gyration ¢ are the same
for all of these samples. In addition, the values of ¢ and p are varied together between samples: specifically,
both values are largest for Sample 1, followed by Sample 2, then Sample 6 and then Sample 4. Thus, it is
unclear which of the two parameters has a greater influence on the coarsening rate, which appears to increase
with both ¢¢ and p in Supplementary Fig. 8(a).

For the BCAT-4 experiment (Supplementary Figure 8(b)), ¢¢ and p are similarly decreased together going
from Samples 1 through 3, and a and § are the same for all samples (Table I in the Main Text). Samples 1
and 2 evidently follow the same trend as the BCAT-3 samples: specifically, the coarsening rate of Sample 1
is evidently higher than that of Sample 2, and ¢y and p are larger for the former. On the other hand, Sample
3 does not follow this rule, as its coarsening rate is the largest but its ¢g and p values are the smallest. It is
unclear why this is the case, making this single sample an outlier.



Supplementary Figure 1: Time evolution of BCAT-3, Sample 1. The parameters are listed in Table I in the
Main Text.

Supplementary Figure 2: Time evolution of BCAT-3, Sample 2. The parameters are listed in Table I in the
Main Text.

Supplementary Figure 3: Time evolution of BCAT-3, Sample 4. The parameters are listed in Table I in the
Main Text.



Supplementary Figure 4: Time evolution of BCAT-3, Sample 6. The parameters are listed in Table I in the
Main Text. The circular object in the images taken at ¢t = 10 hours and ¢ = 20 hours is the magnetic stir
bar used by the astronauts to mix the samples.

t=10 hrs : t=20 hrs

Supplementary Figure 5: Time evolution of BCAT-4, Sample 2. The parameters are listed in Table I in the
Main Text.

Supplementary Figure 6: Time evolution of BCAT-4, Sample 3. The parameters are listed in Table I.
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Supplementary Figure 7: Examples of the 1D autocorrelation function C (r) for BCAT-3 Sample 1, at the
times ¢ = 67 hours (a) and ¢t = 86 hours (b). The vertical gray lines indicate the location A, of the first

maximum in C(r) for r > 0. The value of \, is evidently slightly larger in (b) than (a), as one would
expect for a coarsening process.
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Supplementary Figure 8: Time evolution of the characteristic length scale A, (t) for the samples in the
BCAT-3 (panel (a)) and BCAT-4 (panel (b)) experiments. Note that comparatively few images were
available for BCAT-4 Sample 1, likely because the camera malfunctioned during the experiment.



CAPTIONS FOR SUPPLEMENTARY MOVIES

Supplementary Movie 1: Simulation of BCAT-5 Sample 7, with v = 130; the other parameters are listed
in Table I in the Main Text. The left, middle and right panels correspond to the colloid volume fraction ¢,
fluid speed |yu| and fluid vorticity ¥V X u, respectively.

Supplementary Movie 2: Simulation of BCAT-5 Sample 4, with v = 93; the other parameters are listed
in Table I in the Main Text. The left, middle and right panels correspond to the colloid volume fraction ¢,
fluid speed |yu| and fluid vorticity ¥V X u, respectively.

Supplementary Movie 3: Simulations of BCAT-5 Sample 4 (top row) and BCAT-5 Sample 7 (bottom
row), without (left column) and with (right column) hydrodynamics. The panels show the colloid volume
fraction ¢. While v = 0 for the two videos in the first column, v = 93 and « = 130 for BCAT-5 Sample 4
and Sample 7, respectively.
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